On the multiple completeness of eigenfunctions and adjoint functions for ordinary differential bundles with irregular boundary conditions
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (1982), pp. 3-6
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider an irregular problem of the form
\begin{gather}
y^{(n)}+\lambda p_1y^{(n-1)}+\dots+\lambda^n p_ny=0,
\label{1}\\
y^{(\varkappa_i)}(0)+\sum_{k=1}^{\varkappa_i}\alpha_{ik}y^{(\varkappa_i-k)}(0)=0,
\quad i=\overline{1,l},
\label{2}\\
y^{(\varkappa_i)}(1)+\sum_{k=1}^{\varkappa_i}\beta_{ik}y^{(\varkappa_i-k)}(1)=0,
\quad i=\overline{l+1,n};\quad l>n-l,
\label{3}
\end{gather}
The following theorem is proved. If all argument the roots of the characteristic equation of (1) are different then the system of eigenfunctions and adjoint function of the problem (1) to (3) is $n$-multiply complete in $L_2(0,1)$.
@article{VMUMM_1982_3_a0,
author = {A. I. Vagabov},
title = {On the multiple completeness of eigenfunctions and adjoint functions for ordinary differential bundles with irregular boundary conditions},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {3--6},
publisher = {mathdoc},
number = {3},
year = {1982},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_1982_3_a0/}
}
TY - JOUR AU - A. I. Vagabov TI - On the multiple completeness of eigenfunctions and adjoint functions for ordinary differential bundles with irregular boundary conditions JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 1982 SP - 3 EP - 6 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_1982_3_a0/ LA - ru ID - VMUMM_1982_3_a0 ER -
%0 Journal Article %A A. I. Vagabov %T On the multiple completeness of eigenfunctions and adjoint functions for ordinary differential bundles with irregular boundary conditions %J Vestnik Moskovskogo universiteta. Matematika, mehanika %D 1982 %P 3-6 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VMUMM_1982_3_a0/ %G ru %F VMUMM_1982_3_a0
A. I. Vagabov. On the multiple completeness of eigenfunctions and adjoint functions for ordinary differential bundles with irregular boundary conditions. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (1982), pp. 3-6. http://geodesic.mathdoc.fr/item/VMUMM_1982_3_a0/