Two remarks on critical associative rings
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (1982), pp. 24-28
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $A$ be a critical ring, $R$ its Jacobson radical and $A/R\cong B_1\oplus\dots\oplus B_k$ being simple. We prove that $k$ is at most the nilpotency class of $R$. Then we study when the ring of triangular matrices over a critical ring with unity is critical.
@article{VMUMM_1982_2_a6,
author = {P. N. Siderov},
title = {Two remarks on critical associative rings},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {24--28},
year = {1982},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_1982_2_a6/}
}
P. N. Siderov. Two remarks on critical associative rings. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (1982), pp. 24-28. http://geodesic.mathdoc.fr/item/VMUMM_1982_2_a6/