Two remarks on critical associative rings
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (1982), pp. 24-28

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $A$ be a critical ring, $R$ its Jacobson radical and $A/R\cong B_1\oplus\dots\oplus B_k$ being simple. We prove that $k$ is at most the nilpotency class of $R$. Then we study when the ring of triangular matrices over a critical ring with unity is critical.
@article{VMUMM_1982_2_a6,
     author = {P. N. Siderov},
     title = {Two remarks on critical associative rings},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {24--28},
     publisher = {mathdoc},
     number = {2},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_1982_2_a6/}
}
TY  - JOUR
AU  - P. N. Siderov
TI  - Two remarks on critical associative rings
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 1982
SP  - 24
EP  - 28
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_1982_2_a6/
LA  - ru
ID  - VMUMM_1982_2_a6
ER  - 
%0 Journal Article
%A P. N. Siderov
%T Two remarks on critical associative rings
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 1982
%P 24-28
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_1982_2_a6/
%G ru
%F VMUMM_1982_2_a6
P. N. Siderov. Two remarks on critical associative rings. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (1982), pp. 24-28. http://geodesic.mathdoc.fr/item/VMUMM_1982_2_a6/