On varieties of algebras with semigroup identity
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (1982), pp. 8-11
Voir la notice de l'article provenant de la source Math-Net.Ru
It is shown that a variety $\mathfrak{M}$ of algebras over a field $F$ of characteristic zero satisfies a semigroup identity if and only if $\mathfrak{M}$ does not contain the algebra of the two by-two upper triangular matrices over $F$. We prove that these varieties are Specht.
@article{VMUMM_1982_2_a2,
author = {I. Z. Golubchik and A. V. Mikhalev},
title = {On varieties of algebras with semigroup identity},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {8--11},
publisher = {mathdoc},
number = {2},
year = {1982},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_1982_2_a2/}
}
I. Z. Golubchik; A. V. Mikhalev. On varieties of algebras with semigroup identity. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (1982), pp. 8-11. http://geodesic.mathdoc.fr/item/VMUMM_1982_2_a2/