Combinatorial invariance of toric singularities
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (1982), pp. 80-87

Voir la notice de l'article provenant de la source Math-Net.Ru

The are two theorems in this paper. 1. Let $\sigma_1$ and $\sigma_2$ be convex polyhedral cones in an $n$-dimensional lattice. Let $X_1$, $X_2$ be their associated affine toric varieties. $X_1$ and $X_2$ are isomorphic iff $\sigma_1$ and $\sigma_2$ are isomorphic. 2. Let $X_1$, $X_2$ be affine toric varieties. Let $T_1$ be a torus, embedded in $X_1$, $T_2$ be the same tor $X_2$. $X_1$, $X_2$ are isomorphic iff there exists a formal isomorphism between the points of maximal strati on $X_1$, $X_2$.
@article{VMUMM_1982_2_a18,
     author = {A. S. Demushkin},
     title = {Combinatorial invariance of toric singularities},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {80--87},
     publisher = {mathdoc},
     number = {2},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_1982_2_a18/}
}
TY  - JOUR
AU  - A. S. Demushkin
TI  - Combinatorial invariance of toric singularities
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 1982
SP  - 80
EP  - 87
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_1982_2_a18/
LA  - ru
ID  - VMUMM_1982_2_a18
ER  - 
%0 Journal Article
%A A. S. Demushkin
%T Combinatorial invariance of toric singularities
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 1982
%P 80-87
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_1982_2_a18/
%G ru
%F VMUMM_1982_2_a18
A. S. Demushkin. Combinatorial invariance of toric singularities. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (1982), pp. 80-87. http://geodesic.mathdoc.fr/item/VMUMM_1982_2_a18/