Combinatorial invariance of toric singularities
    
    
  
  
  
      
      
      
        
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (1982), pp. 80-87
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The are two theorems in this paper. 
1. Let $\sigma_1$ and $\sigma_2$ be convex polyhedral cones in an $n$-dimensional lattice. Let $X_1$, $X_2$ be their associated affine toric varieties. $X_1$ and $X_2$ are isomorphic iff $\sigma_1$ and $\sigma_2$ are isomorphic. 
2. Let $X_1$, $X_2$  be affine toric varieties. Let $T_1$ be a torus, embedded in $X_1$, $T_2$  be the same tor $X_2$. $X_1$, $X_2$  are isomorphic iff there exists a formal isomorphism between the points of maximal strati on $X_1$, $X_2$.
			
            
            
            
          
        
      @article{VMUMM_1982_2_a18,
     author = {A. S. Demushkin},
     title = {Combinatorial invariance of toric singularities},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {80--87},
     publisher = {mathdoc},
     number = {2},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_1982_2_a18/}
}
                      
                      
                    A. S. Demushkin. Combinatorial invariance of toric singularities. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (1982), pp. 80-87. http://geodesic.mathdoc.fr/item/VMUMM_1982_2_a18/
