On algebraic number fields of degree five
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (1982), pp. 76-80

Voir la notice de l'article provenant de la source Math-Net.Ru

An algorithm for determining all algebraic number fields of degree $5$ with signatures $\tau=1$, $\tau=2$ and bounded discriminants is proposed. The main idea of this algorithm based on an author's theorem. The results of calculation for the fields with discriminants $D\le6000$ and $D\le5000$ are enumerated.
@article{VMUMM_1982_2_a17,
     author = {D. G. Rish},
     title = {On algebraic number fields of degree five},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {76--80},
     publisher = {mathdoc},
     number = {2},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_1982_2_a17/}
}
TY  - JOUR
AU  - D. G. Rish
TI  - On algebraic number fields of degree five
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 1982
SP  - 76
EP  - 80
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_1982_2_a17/
LA  - ru
ID  - VMUMM_1982_2_a17
ER  - 
%0 Journal Article
%A D. G. Rish
%T On algebraic number fields of degree five
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 1982
%P 76-80
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_1982_2_a17/
%G ru
%F VMUMM_1982_2_a17
D. G. Rish. On algebraic number fields of degree five. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (1982), pp. 76-80. http://geodesic.mathdoc.fr/item/VMUMM_1982_2_a17/