Solvable $R$-groups of finite rank
    
    
  
  
  
      
      
      
        
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (1982), pp. 72-76
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We prove that the commutator subgroup of a finite rank soluble $R$-group is nilpotent. We find a criterion for a soluble group of finite rank to be an $R$-group in terms of modules over integral group rings.
			
            
            
            
          
        
      @article{VMUMM_1982_2_a16,
     author = {A. R. Asasyan},
     title = {Solvable $R$-groups of finite rank},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {72--76},
     publisher = {mathdoc},
     number = {2},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_1982_2_a16/}
}
                      
                      
                    A. R. Asasyan. Solvable $R$-groups of finite rank. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (1982), pp. 72-76. http://geodesic.mathdoc.fr/item/VMUMM_1982_2_a16/
