A solvability criterion for a finite-dimensional Lie algebra
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (1982), pp. 5-8

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that a finite-dimensional Lie algebra $L$ over an algebraically closed field of characteristic $p>0$ is solvable if $L=A+B$ where $[A,A]=0$, $\dim A$, and $B$ is an arbitrary nilpotent subalgebra. We study some more general situation, too.
@article{VMUMM_1982_2_a1,
     author = {A. I. Kostrikin},
     title = {A solvability criterion for a finite-dimensional {Lie} algebra},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {5--8},
     publisher = {mathdoc},
     number = {2},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_1982_2_a1/}
}
TY  - JOUR
AU  - A. I. Kostrikin
TI  - A solvability criterion for a finite-dimensional Lie algebra
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 1982
SP  - 5
EP  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_1982_2_a1/
LA  - ru
ID  - VMUMM_1982_2_a1
ER  - 
%0 Journal Article
%A A. I. Kostrikin
%T A solvability criterion for a finite-dimensional Lie algebra
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 1982
%P 5-8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_1982_2_a1/
%G ru
%F VMUMM_1982_2_a1
A. I. Kostrikin. A solvability criterion for a finite-dimensional Lie algebra. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (1982), pp. 5-8. http://geodesic.mathdoc.fr/item/VMUMM_1982_2_a1/