A solvability criterion for a finite-dimensional Lie algebra
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (1982), pp. 5-8
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove that a finite-dimensional Lie algebra $L$ over an algebraically closed field of characteristic $p>0$ is solvable if $L=A+B$ where $[A,A]=0$, $\dim A$, and $B$ is an arbitrary nilpotent subalgebra. We study some more general situation, too.
@article{VMUMM_1982_2_a1,
author = {A. I. Kostrikin},
title = {A solvability criterion for a finite-dimensional {Lie} algebra},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {5--8},
publisher = {mathdoc},
number = {2},
year = {1982},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_1982_2_a1/}
}
A. I. Kostrikin. A solvability criterion for a finite-dimensional Lie algebra. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (1982), pp. 5-8. http://geodesic.mathdoc.fr/item/VMUMM_1982_2_a1/