Frequency spectrum of functional spaces
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (1982), pp. 31-35

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $X$ be a compact space. Is the tightness of the product $C_p(X)\times Y$ countable for every $Y$ of countable tightness? The main result: the answer is yes iff $X$ is scattered. For an arbitrary $X$ the frequency spectrum of $C_p(X)$ is characterized in terms of cardinal functions of the space $X$.
@article{VMUMM_1982_1_a8,
     author = {V. V. Uspenskii},
     title = {Frequency spectrum of functional spaces},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {31--35},
     publisher = {mathdoc},
     number = {1},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_1982_1_a8/}
}
TY  - JOUR
AU  - V. V. Uspenskii
TI  - Frequency spectrum of functional spaces
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 1982
SP  - 31
EP  - 35
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_1982_1_a8/
LA  - ru
ID  - VMUMM_1982_1_a8
ER  - 
%0 Journal Article
%A V. V. Uspenskii
%T Frequency spectrum of functional spaces
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 1982
%P 31-35
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_1982_1_a8/
%G ru
%F VMUMM_1982_1_a8
V. V. Uspenskii. Frequency spectrum of functional spaces. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (1982), pp. 31-35. http://geodesic.mathdoc.fr/item/VMUMM_1982_1_a8/