Boundedness of the degree of multidimensional toric Fano varieties
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (1982), pp. 22-27

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $V$ be a nonsingular projective torical variety with ample anti-canonical sheaf, i. e. a torical Fano variety. It is proved that the degree of this variety is less then a constant depending only on the dimension of $V$. There is a simple method for the computation of this constant.
@article{VMUMM_1982_1_a6,
     author = {V. V. Batyrev},
     title = {Boundedness of the degree of multidimensional toric {Fano} varieties},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {22--27},
     publisher = {mathdoc},
     number = {1},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_1982_1_a6/}
}
TY  - JOUR
AU  - V. V. Batyrev
TI  - Boundedness of the degree of multidimensional toric Fano varieties
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 1982
SP  - 22
EP  - 27
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_1982_1_a6/
LA  - ru
ID  - VMUMM_1982_1_a6
ER  - 
%0 Journal Article
%A V. V. Batyrev
%T Boundedness of the degree of multidimensional toric Fano varieties
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 1982
%P 22-27
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_1982_1_a6/
%G ru
%F VMUMM_1982_1_a6
V. V. Batyrev. Boundedness of the degree of multidimensional toric Fano varieties. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (1982), pp. 22-27. http://geodesic.mathdoc.fr/item/VMUMM_1982_1_a6/