Boundedness of the degree of multidimensional toric Fano varieties
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (1982), pp. 22-27
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $V$ be a nonsingular projective torical variety with ample anti-canonical sheaf, i. e. a torical Fano variety. It is proved that the degree of this variety is less then a constant depending only on the dimension of $V$. There is a simple method for the computation of this constant.
@article{VMUMM_1982_1_a6,
author = {V. V. Batyrev},
title = {Boundedness of the degree of multidimensional toric {Fano} varieties},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {22--27},
publisher = {mathdoc},
number = {1},
year = {1982},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_1982_1_a6/}
}
V. V. Batyrev. Boundedness of the degree of multidimensional toric Fano varieties. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (1982), pp. 22-27. http://geodesic.mathdoc.fr/item/VMUMM_1982_1_a6/