The poles of Pad\'e approximants to $_1F_1(1;c;z)$
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (1982), pp. 11-14
Voir la notice de l'article provenant de la source Math-Net.Ru
We construct some regions without zeros of the confluent hypergeometric function $_1F_1(-n;d;z)$ ($n\in\mathbf N, d\in\mathbf C$). The main result is as follows. If
$$
-n+\frac7{16}\geq\operatorname{Re}(d),\quad_1F_1(-n;d;z)=0,
$$
then
$$
-\operatorname{Re}(d)-\operatorname{Im}(d)\operatorname{tg}\biggl(\frac{\arg(z)}2\biggr)
\geq|z|>\operatorname{Re}(z)+2\biggl(-n+\frac7{16}-
\operatorname{Re}(d)\biggr).
$$
@article{VMUMM_1982_1_a2,
author = {D. V. Pannikov},
title = {The poles of {Pad\'e} approximants to $_1F_1(1;c;z)$},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {11--14},
publisher = {mathdoc},
number = {1},
year = {1982},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_1982_1_a2/}
}
D. V. Pannikov. The poles of Pad\'e approximants to $_1F_1(1;c;z)$. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (1982), pp. 11-14. http://geodesic.mathdoc.fr/item/VMUMM_1982_1_a2/