An a priori estimate for solutions of some quasilinear parabolic systems.~II
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (1967), pp. 94-99
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper the first boundary value problem for systems of type (I) is studied. Under some conditions on $\Phi$, $\Psi$ an apriori estimate for
$|u|$ is established; in case when $\Psi=|u|^2$ from such an estimate it follows that the solution exists in the large.
@article{VMUMM_1967_6_a9,
author = {T. D. Ventsel'},
title = {An a priori estimate for solutions of some quasilinear parabolic {systems.~II}},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {94--99},
publisher = {mathdoc},
number = {6},
year = {1967},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_1967_6_a9/}
}
TY - JOUR AU - T. D. Ventsel' TI - An a priori estimate for solutions of some quasilinear parabolic systems.~II JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 1967 SP - 94 EP - 99 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_1967_6_a9/ LA - ru ID - VMUMM_1967_6_a9 ER -
T. D. Ventsel'. An a priori estimate for solutions of some quasilinear parabolic systems.~II. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (1967), pp. 94-99. http://geodesic.mathdoc.fr/item/VMUMM_1967_6_a9/