The structure of closed ideals in a certain ring of functions
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (1967), pp. 70-77
Voir la notice de l'article provenant de la source Math-Net.Ru
A normed ring $P(Q)$ of continuous functions is considered on a Hausdorff compact space $Q$ with a dynamic system given on it. A function on $Q$ belongs to the ring in question if and only if it has $p$ continuous derivatives along the paths of this system. The main theorem is: each closed ideal in such a ring is an intersection of primary ideals.
@article{VMUMM_1967_6_a6,
author = {N. B. Levina},
title = {The structure of closed ideals in a certain ring of functions},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {70--77},
publisher = {mathdoc},
number = {6},
year = {1967},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_1967_6_a6/}
}
N. B. Levina. The structure of closed ideals in a certain ring of functions. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (1967), pp. 70-77. http://geodesic.mathdoc.fr/item/VMUMM_1967_6_a6/