The structure of closed ideals in a certain ring of functions
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (1967), pp. 70-77

Voir la notice de l'article provenant de la source Math-Net.Ru

A normed ring $P(Q)$ of continuous functions is considered on a Hausdorff compact space $Q$ with a dynamic system given on it. A function on $Q$ belongs to the ring in question if and only if it has $p$ continuous derivatives along the paths of this system. The main theorem is: each closed ideal in such a ring is an intersection of primary ideals.
@article{VMUMM_1967_6_a6,
     author = {N. B. Levina},
     title = {The structure of closed ideals in a certain ring of functions},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {70--77},
     publisher = {mathdoc},
     number = {6},
     year = {1967},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_1967_6_a6/}
}
TY  - JOUR
AU  - N. B. Levina
TI  - The structure of closed ideals in a certain ring of functions
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 1967
SP  - 70
EP  - 77
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_1967_6_a6/
LA  - ru
ID  - VMUMM_1967_6_a6
ER  - 
%0 Journal Article
%A N. B. Levina
%T The structure of closed ideals in a certain ring of functions
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 1967
%P 70-77
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_1967_6_a6/
%G ru
%F VMUMM_1967_6_a6
N. B. Levina. The structure of closed ideals in a certain ring of functions. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (1967), pp. 70-77. http://geodesic.mathdoc.fr/item/VMUMM_1967_6_a6/