Inverse Sturm--Liouville Problem and its application to inverse problems in thin film optics
Numerical methods and programming, Tome 25 (2024) no. 5, pp. 1-10
Voir la notice de l'article provenant de la source Math-Net.Ru
The application of the results of the inverse Sturm–Liouville problem for the development of the theory and numerical methods for solving inverse problems in thin film optics is shown. A brief overview of the most effective methods for designing optical coatings is given. It is shown that with the help of developed methods the most demanding types of coatings with a large number of optimized parameters can be designed. The unique spectral properties of these coatings are achieved on the basis of the developed theory.
Keywords:
inverse problem, transformation operators, optical coatings, spectral characteristics.
Mots-clés : Sturm-Liouville problem
Mots-clés : Sturm-Liouville problem
@article{VMP_2024_25_5_a0,
author = {A. V. Tikhonravov and A. A. Shkalikov},
title = {Inverse {Sturm--Liouville} {Problem} and its application to inverse problems in thin film optics},
journal = {Numerical methods and programming},
pages = {1--10},
publisher = {mathdoc},
volume = {25},
number = {5},
year = {2024},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMP_2024_25_5_a0/}
}
TY - JOUR AU - A. V. Tikhonravov AU - A. A. Shkalikov TI - Inverse Sturm--Liouville Problem and its application to inverse problems in thin film optics JO - Numerical methods and programming PY - 2024 SP - 1 EP - 10 VL - 25 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMP_2024_25_5_a0/ LA - ru ID - VMP_2024_25_5_a0 ER -
%0 Journal Article %A A. V. Tikhonravov %A A. A. Shkalikov %T Inverse Sturm--Liouville Problem and its application to inverse problems in thin film optics %J Numerical methods and programming %D 2024 %P 1-10 %V 25 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/VMP_2024_25_5_a0/ %G ru %F VMP_2024_25_5_a0
A. V. Tikhonravov; A. A. Shkalikov. Inverse Sturm--Liouville Problem and its application to inverse problems in thin film optics. Numerical methods and programming, Tome 25 (2024) no. 5, pp. 1-10. http://geodesic.mathdoc.fr/item/VMP_2024_25_5_a0/