On the possibility of using the NNQS for the Klein--Gordon--Fock equation
Numerical methods and programming, Tome 25 (2024) no. 4, pp. 464-475
Voir la notice de l'article provenant de la source Math-Net.Ru
In this article, we present a method for finding quantum stationary states of the Klein–Gordon–Fock (KGF) equation using neural networks (NNs). The method has been tested on two well-known systems: a relativistic spinless particle in a Coulomb potential, and a one-dimensional relativistic harmonic oscillator. The results of training the neural network for these two systems are presented, as well as the analysis of the training process. The neural network method shows a good agreement with analytical calculations (if they can be found explicitly), providing a promising approach for solving more complex problems in quantum physics and quantum chemistry.
Keywords:
quantum mechanics, neural network, Klein–Gordon–Fock equation.
@article{VMP_2024_25_4_a6,
author = {A. M. Kalitenko and P. I. Pronin},
title = {On the possibility of using the {NNQS} for the {Klein--Gordon--Fock} equation},
journal = {Numerical methods and programming},
pages = {464--475},
publisher = {mathdoc},
volume = {25},
number = {4},
year = {2024},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VMP_2024_25_4_a6/}
}
TY - JOUR AU - A. M. Kalitenko AU - P. I. Pronin TI - On the possibility of using the NNQS for the Klein--Gordon--Fock equation JO - Numerical methods and programming PY - 2024 SP - 464 EP - 475 VL - 25 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMP_2024_25_4_a6/ LA - en ID - VMP_2024_25_4_a6 ER -
A. M. Kalitenko; P. I. Pronin. On the possibility of using the NNQS for the Klein--Gordon--Fock equation. Numerical methods and programming, Tome 25 (2024) no. 4, pp. 464-475. http://geodesic.mathdoc.fr/item/VMP_2024_25_4_a6/