On the possibility of using the NNQS for the Klein--Gordon--Fock equation
Numerical methods and programming, Tome 25 (2024) no. 4, pp. 464-475.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article, we present a method for finding quantum stationary states of the Klein–Gordon–Fock (KGF) equation using neural networks (NNs). The method has been tested on two well-known systems: a relativistic spinless particle in a Coulomb potential, and a one-dimensional relativistic harmonic oscillator. The results of training the neural network for these two systems are presented, as well as the analysis of the training process. The neural network method shows a good agreement with analytical calculations (if they can be found explicitly), providing a promising approach for solving more complex problems in quantum physics and quantum chemistry.
Keywords: quantum mechanics, neural network, Klein–Gordon–Fock equation.
@article{VMP_2024_25_4_a6,
     author = {A. M. Kalitenko and P. I. Pronin},
     title = {On the possibility of using the {NNQS} for the {Klein--Gordon--Fock} equation},
     journal = {Numerical methods and programming},
     pages = {464--475},
     publisher = {mathdoc},
     volume = {25},
     number = {4},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMP_2024_25_4_a6/}
}
TY  - JOUR
AU  - A. M. Kalitenko
AU  - P. I. Pronin
TI  - On the possibility of using the NNQS for the Klein--Gordon--Fock equation
JO  - Numerical methods and programming
PY  - 2024
SP  - 464
EP  - 475
VL  - 25
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMP_2024_25_4_a6/
LA  - en
ID  - VMP_2024_25_4_a6
ER  - 
%0 Journal Article
%A A. M. Kalitenko
%A P. I. Pronin
%T On the possibility of using the NNQS for the Klein--Gordon--Fock equation
%J Numerical methods and programming
%D 2024
%P 464-475
%V 25
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMP_2024_25_4_a6/
%G en
%F VMP_2024_25_4_a6
A. M. Kalitenko; P. I. Pronin. On the possibility of using the NNQS for the Klein--Gordon--Fock equation. Numerical methods and programming, Tome 25 (2024) no. 4, pp. 464-475. http://geodesic.mathdoc.fr/item/VMP_2024_25_4_a6/