Numerical image denoising and deblurring via an approximate weighted mean curvature flow model
Numerical methods and programming, Tome 25 (2024) no. 2, pp. 115-126
Voir la notice de l'article provenant de la source Math-Net.Ru
A new mathematical model for image denoising and deblurring is proposed and numerically implemented. It is based on a geometric differential equation that describes motion of a level surface of its solution by the weighted mean curvature. The numerical experiments are carried out to demonstrate the computational effectiveness of the proposed technique in comparison with the weighted total variation flow and VH-regularization.
Keywords:
denoising and deblurring, weighted mean curvature, geometric equation, numerical experiments.
Mots-clés : total variation
Mots-clés : total variation
@article{VMP_2024_25_2_a0,
author = {A. A. Timonov},
title = {Numerical image denoising and deblurring via an approximate weighted mean curvature flow model},
journal = {Numerical methods and programming},
pages = {115--126},
publisher = {mathdoc},
volume = {25},
number = {2},
year = {2024},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VMP_2024_25_2_a0/}
}
TY - JOUR AU - A. A. Timonov TI - Numerical image denoising and deblurring via an approximate weighted mean curvature flow model JO - Numerical methods and programming PY - 2024 SP - 115 EP - 126 VL - 25 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMP_2024_25_2_a0/ LA - en ID - VMP_2024_25_2_a0 ER -
A. A. Timonov. Numerical image denoising and deblurring via an approximate weighted mean curvature flow model. Numerical methods and programming, Tome 25 (2024) no. 2, pp. 115-126. http://geodesic.mathdoc.fr/item/VMP_2024_25_2_a0/