The kantorovich projection method in the generalized quadratic spectrum approximation
Numerical methods and programming, Tome 23 (2022) no. 3, pp. 240-247
Voir la notice de l'article provenant de la source Math-Net.Ru
The objective of this paper is to construct a generalized quadratic spectrum approximation based on the Kantorovich projection method which llows us to deal with the spectral pollution problem. For this purpose, we prove that the property U (see Eq. 3) holds under weaker conditions than the norm and the collectively compact convergence. Numerical results illustrate the effectiveness and the convergence of our method.
Keywords:
spectral approximation, Kantorovich projection, eigenvalue.
Mots-clés : spectral pollution
Mots-clés : spectral pollution
@article{VMP_2022_23_3_a3,
author = {Somia Kamouche and Hamza Guebbai and Mourad Ghiat and Muhammet Kurulay},
title = {The kantorovich projection method in the generalized quadratic spectrum approximation},
journal = {Numerical methods and programming},
pages = {240--247},
publisher = {mathdoc},
volume = {23},
number = {3},
year = {2022},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VMP_2022_23_3_a3/}
}
TY - JOUR AU - Somia Kamouche AU - Hamza Guebbai AU - Mourad Ghiat AU - Muhammet Kurulay TI - The kantorovich projection method in the generalized quadratic spectrum approximation JO - Numerical methods and programming PY - 2022 SP - 240 EP - 247 VL - 23 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMP_2022_23_3_a3/ LA - en ID - VMP_2022_23_3_a3 ER -
%0 Journal Article %A Somia Kamouche %A Hamza Guebbai %A Mourad Ghiat %A Muhammet Kurulay %T The kantorovich projection method in the generalized quadratic spectrum approximation %J Numerical methods and programming %D 2022 %P 240-247 %V 23 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VMP_2022_23_3_a3/ %G en %F VMP_2022_23_3_a3
Somia Kamouche; Hamza Guebbai; Mourad Ghiat; Muhammet Kurulay. The kantorovich projection method in the generalized quadratic spectrum approximation. Numerical methods and programming, Tome 23 (2022) no. 3, pp. 240-247. http://geodesic.mathdoc.fr/item/VMP_2022_23_3_a3/