The kantorovich projection method in the generalized quadratic spectrum approximation
Numerical methods and programming, Tome 23 (2022) no. 3, pp. 240-247.

Voir la notice de l'article provenant de la source Math-Net.Ru

The objective of this paper is to construct a generalized quadratic spectrum approximation based on the Kantorovich projection method which llows us to deal with the spectral pollution problem. For this purpose, we prove that the property U (see Eq. 3) holds under weaker conditions than the norm and the collectively compact convergence. Numerical results illustrate the effectiveness and the convergence of our method.
Keywords: spectral approximation, Kantorovich projection, eigenvalue.
Mots-clés : spectral pollution
@article{VMP_2022_23_3_a3,
     author = {Somia Kamouche and Hamza Guebbai and Mourad Ghiat and Muhammet Kurulay},
     title = {The kantorovich projection method in the generalized quadratic spectrum approximation},
     journal = {Numerical methods and programming},
     pages = {240--247},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMP_2022_23_3_a3/}
}
TY  - JOUR
AU  - Somia Kamouche
AU  - Hamza Guebbai
AU  - Mourad Ghiat
AU  - Muhammet Kurulay
TI  - The kantorovich projection method in the generalized quadratic spectrum approximation
JO  - Numerical methods and programming
PY  - 2022
SP  - 240
EP  - 247
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMP_2022_23_3_a3/
LA  - en
ID  - VMP_2022_23_3_a3
ER  - 
%0 Journal Article
%A Somia Kamouche
%A Hamza Guebbai
%A Mourad Ghiat
%A Muhammet Kurulay
%T The kantorovich projection method in the generalized quadratic spectrum approximation
%J Numerical methods and programming
%D 2022
%P 240-247
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMP_2022_23_3_a3/
%G en
%F VMP_2022_23_3_a3
Somia Kamouche; Hamza Guebbai; Mourad Ghiat; Muhammet Kurulay. The kantorovich projection method in the generalized quadratic spectrum approximation. Numerical methods and programming, Tome 23 (2022) no. 3, pp. 240-247. http://geodesic.mathdoc.fr/item/VMP_2022_23_3_a3/