Two numerical treatments for solving the linear integro-differential Fredholm equation with a weakly singular kernel
Numerical methods and programming, Tome 23 (2022) no. 2, pp. 117-136.

Voir la notice de l'article provenant de la source Math-Net.Ru

We compare the error behavior of two methods used to find a numerical solution of the linear integro-differential Fredholm equation with a weakly singular kernel in Banach space $C^1[a,b]$. We construct an approximation solution based on the modified cubic $b$-spline collocation method. Another estimation of the exact solution, constructed by applying the numerical process of product and quadrature integration, is considered as well. Two proposed methods lead to solving a linear algebraic system. The stability and convergence of the cubic $b$-spline collocation estimate is proved. We test these methods on the concrete examples and compare the numerical results with the exact solution to show the efficiency and simplicity of the modified collocation method.
Keywords: singular integral equations, integro-differential equation, fredholm equations.
@article{VMP_2022_23_2_a2,
     author = {B. Tair and S. Segni and H. Guebbai and M. Ghait},
     title = {Two numerical treatments for solving the linear integro-differential {Fredholm} equation with a weakly singular kernel},
     journal = {Numerical methods and programming},
     pages = {117--136},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMP_2022_23_2_a2/}
}
TY  - JOUR
AU  - B. Tair
AU  - S. Segni
AU  - H. Guebbai
AU  - M. Ghait
TI  - Two numerical treatments for solving the linear integro-differential Fredholm equation with a weakly singular kernel
JO  - Numerical methods and programming
PY  - 2022
SP  - 117
EP  - 136
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMP_2022_23_2_a2/
LA  - en
ID  - VMP_2022_23_2_a2
ER  - 
%0 Journal Article
%A B. Tair
%A S. Segni
%A H. Guebbai
%A M. Ghait
%T Two numerical treatments for solving the linear integro-differential Fredholm equation with a weakly singular kernel
%J Numerical methods and programming
%D 2022
%P 117-136
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMP_2022_23_2_a2/
%G en
%F VMP_2022_23_2_a2
B. Tair; S. Segni; H. Guebbai; M. Ghait. Two numerical treatments for solving the linear integro-differential Fredholm equation with a weakly singular kernel. Numerical methods and programming, Tome 23 (2022) no. 2, pp. 117-136. http://geodesic.mathdoc.fr/item/VMP_2022_23_2_a2/