Two numerical treatments for solving the linear integro-differential Fredholm equation with a weakly singular kernel
Numerical methods and programming, Tome 23 (2022) no. 2, pp. 117-136
Voir la notice de l'article provenant de la source Math-Net.Ru
We compare the error behavior of two methods used to find a numerical solution of the linear integro-differential Fredholm equation with a weakly singular kernel in Banach space $C^1[a,b]$. We construct an approximation solution based on the modified cubic $b$-spline collocation method. Another estimation of the exact solution, constructed by applying the numerical process of product and quadrature integration, is considered as well. Two proposed methods lead to solving a linear algebraic system. The stability and convergence of the cubic $b$-spline collocation estimate is proved. We test these methods on the concrete examples and compare the numerical results with the exact solution to show the efficiency and simplicity of the modified collocation method.
Keywords:
singular integral equations, integro-differential equation, fredholm equations.
@article{VMP_2022_23_2_a2,
author = {B. Tair and S. Segni and H. Guebbai and M. Ghait},
title = {Two numerical treatments for solving the linear integro-differential {Fredholm} equation with a weakly singular kernel},
journal = {Numerical methods and programming},
pages = {117--136},
publisher = {mathdoc},
volume = {23},
number = {2},
year = {2022},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VMP_2022_23_2_a2/}
}
TY - JOUR AU - B. Tair AU - S. Segni AU - H. Guebbai AU - M. Ghait TI - Two numerical treatments for solving the linear integro-differential Fredholm equation with a weakly singular kernel JO - Numerical methods and programming PY - 2022 SP - 117 EP - 136 VL - 23 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMP_2022_23_2_a2/ LA - en ID - VMP_2022_23_2_a2 ER -
%0 Journal Article %A B. Tair %A S. Segni %A H. Guebbai %A M. Ghait %T Two numerical treatments for solving the linear integro-differential Fredholm equation with a weakly singular kernel %J Numerical methods and programming %D 2022 %P 117-136 %V 23 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VMP_2022_23_2_a2/ %G en %F VMP_2022_23_2_a2
B. Tair; S. Segni; H. Guebbai; M. Ghait. Two numerical treatments for solving the linear integro-differential Fredholm equation with a weakly singular kernel. Numerical methods and programming, Tome 23 (2022) no. 2, pp. 117-136. http://geodesic.mathdoc.fr/item/VMP_2022_23_2_a2/