Simulation of physical instability on contact boundaries in multicomponent compressible gas flows by a hybrid large-particle method
Numerical methods and programming, Tome 21 (2020) no. 2, pp. 129-137.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to the development of a large-particle hybrid method for two-dimensional flows with physical instability on the interface of inhomogeneous gas mixtures. The high resolving capacity of the method is shown for problems of shock wave interaction with a cylindrical bubble of a light or heavy gas in comparison with experiments and simulations using other schemes of higher-order approximation.
Keywords: hybrid large-particle method; resolving capacity; multicomponent gas mixtures.
@article{VMP_2020_21_2_a0,
     author = {D. V. Sadin},
     title = {Simulation of physical instability on contact boundaries in multicomponent compressible gas flows by a hybrid large-particle method},
     journal = {Numerical methods and programming},
     pages = {129--137},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMP_2020_21_2_a0/}
}
TY  - JOUR
AU  - D. V. Sadin
TI  - Simulation of physical instability on contact boundaries in multicomponent compressible gas flows by a hybrid large-particle method
JO  - Numerical methods and programming
PY  - 2020
SP  - 129
EP  - 137
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMP_2020_21_2_a0/
LA  - ru
ID  - VMP_2020_21_2_a0
ER  - 
%0 Journal Article
%A D. V. Sadin
%T Simulation of physical instability on contact boundaries in multicomponent compressible gas flows by a hybrid large-particle method
%J Numerical methods and programming
%D 2020
%P 129-137
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMP_2020_21_2_a0/
%G ru
%F VMP_2020_21_2_a0
D. V. Sadin. Simulation of physical instability on contact boundaries in multicomponent compressible gas flows by a hybrid large-particle method. Numerical methods and programming, Tome 21 (2020) no. 2, pp. 129-137. http://geodesic.mathdoc.fr/item/VMP_2020_21_2_a0/