Simulation of physical instability on contact boundaries in multicomponent compressible gas flows by a hybrid large-particle method
Numerical methods and programming, Tome 21 (2020) no. 2, pp. 129-137
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper is devoted to the development of a large-particle hybrid method for two-dimensional flows with physical instability on the interface of inhomogeneous gas mixtures. The high resolving capacity of the method is shown for problems of shock wave interaction with a cylindrical bubble of a light or heavy gas in comparison with experiments and simulations using other schemes of higher-order approximation.
Keywords:
hybrid large-particle method; resolving capacity; multicomponent gas mixtures.
@article{VMP_2020_21_2_a0,
author = {D. V. Sadin},
title = {Simulation of physical instability on contact boundaries in multicomponent compressible gas flows by a hybrid large-particle method},
journal = {Numerical methods and programming},
pages = {129--137},
publisher = {mathdoc},
volume = {21},
number = {2},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMP_2020_21_2_a0/}
}
TY - JOUR AU - D. V. Sadin TI - Simulation of physical instability on contact boundaries in multicomponent compressible gas flows by a hybrid large-particle method JO - Numerical methods and programming PY - 2020 SP - 129 EP - 137 VL - 21 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMP_2020_21_2_a0/ LA - ru ID - VMP_2020_21_2_a0 ER -
%0 Journal Article %A D. V. Sadin %T Simulation of physical instability on contact boundaries in multicomponent compressible gas flows by a hybrid large-particle method %J Numerical methods and programming %D 2020 %P 129-137 %V 21 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VMP_2020_21_2_a0/ %G ru %F VMP_2020_21_2_a0
D. V. Sadin. Simulation of physical instability on contact boundaries in multicomponent compressible gas flows by a hybrid large-particle method. Numerical methods and programming, Tome 21 (2020) no. 2, pp. 129-137. http://geodesic.mathdoc.fr/item/VMP_2020_21_2_a0/