Spatial differential analysis of the intensity distribution for a collimated wave beam
Numerical methods and programming, Tome 21 (2020) no. 1, pp. 13-26.

Voir la notice de l'article provenant de la source Math-Net.Ru

A method for the comparative analysis of intensity distribution profiles is proposed on the basis of the image structure tensor. The parameter set of the local tensor array introduced for each pixel of the recorded image is used to determine the spectrum of local orientations, the energy intensity profile of the image, and the coherency of its structure. The proposed method is important for the discrete analysis of space-time structures of wave beams transmitted through the regions of localized or distributed refractive noises.
Keywords: intensity profile of wave beam, structure tensor of image, structure consistency, energy capacity of structure, spectrum of local orientations.
@article{VMP_2020_21_1_a1,
     author = {A. V. Blank and N. A. Sukhareva},
     title = {Spatial differential analysis of the intensity distribution for a collimated wave beam},
     journal = {Numerical methods and programming},
     pages = {13--26},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMP_2020_21_1_a1/}
}
TY  - JOUR
AU  - A. V. Blank
AU  - N. A. Sukhareva
TI  - Spatial differential analysis of the intensity distribution for a collimated wave beam
JO  - Numerical methods and programming
PY  - 2020
SP  - 13
EP  - 26
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMP_2020_21_1_a1/
LA  - ru
ID  - VMP_2020_21_1_a1
ER  - 
%0 Journal Article
%A A. V. Blank
%A N. A. Sukhareva
%T Spatial differential analysis of the intensity distribution for a collimated wave beam
%J Numerical methods and programming
%D 2020
%P 13-26
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMP_2020_21_1_a1/
%G ru
%F VMP_2020_21_1_a1
A. V. Blank; N. A. Sukhareva. Spatial differential analysis of the intensity distribution for a collimated wave beam. Numerical methods and programming, Tome 21 (2020) no. 1, pp. 13-26. http://geodesic.mathdoc.fr/item/VMP_2020_21_1_a1/