A two-dimensional hybrid model of an open plasma trap
Numerical methods and programming, Tome 20 (2019) no. 2, pp. 128-137.

Voir la notice de l'article provenant de la source Math-Net.Ru

A hybrid mathematical model of an axisymmetric plasma trap based on the kinetic description for the ion component of the plasma and the MHD approximation for the electronic component is presented. On the basis of the hybrid model, a two-dimensional algorithm is developed to study the dynamics of injected particles in the trap field. The motion of the ion component is calculated by the particle-in-cell method. Finite-difference schemes are used to calculate the magnetic field and the electron component of the plasma. On the basis of the developed algorithm, a program code is created to study the mechanisms of the self-consistent magnetic field structure formation.
Mots-clés : Vlasov equation
Keywords: Maxwells equations, hybrid model, particle-in-cell method.
@article{VMP_2019_20_2_a4,
     author = {E. A. Genrikh and M. A. Boronina},
     title = {A two-dimensional hybrid model of an open plasma trap},
     journal = {Numerical methods and programming},
     pages = {128--137},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMP_2019_20_2_a4/}
}
TY  - JOUR
AU  - E. A. Genrikh
AU  - M. A. Boronina
TI  - A two-dimensional hybrid model of an open plasma trap
JO  - Numerical methods and programming
PY  - 2019
SP  - 128
EP  - 137
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMP_2019_20_2_a4/
LA  - ru
ID  - VMP_2019_20_2_a4
ER  - 
%0 Journal Article
%A E. A. Genrikh
%A M. A. Boronina
%T A two-dimensional hybrid model of an open plasma trap
%J Numerical methods and programming
%D 2019
%P 128-137
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMP_2019_20_2_a4/
%G ru
%F VMP_2019_20_2_a4
E. A. Genrikh; M. A. Boronina. A two-dimensional hybrid model of an open plasma trap. Numerical methods and programming, Tome 20 (2019) no. 2, pp. 128-137. http://geodesic.mathdoc.fr/item/VMP_2019_20_2_a4/