Adaptive smoothing approximation in the construction problem for hydrometeorological fields
Numerical methods and programming, Tome 19 (2018) no. 4, pp. 449-463.

Voir la notice de l'article provenant de la source Math-Net.Ru

A smoothing approximation procedure that allows one to adapt a piecewise linear isoline to its representation by polynomials up to the third order is considered. The smoothing approximation reduces the effect of linear interpolation errors in isoline plotting. The procedure is based on the least-squares method. The data replenishment methods of spline cubic interpolation, most commonly used in practical work, are analyzed. A universal approach for the formation of boundaries of isoline areas on the basis of data availability at the computational grid nodes is discussed.
Keywords: cubic spline, Akima spline
Mots-clés : adaptive interpolation.
@article{VMP_2018_19_4_a11,
     author = {B. N. Ivanov},
     title = {Adaptive smoothing approximation in the construction problem for hydrometeorological fields},
     journal = {Numerical methods and programming},
     pages = {449--463},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMP_2018_19_4_a11/}
}
TY  - JOUR
AU  - B. N. Ivanov
TI  - Adaptive smoothing approximation in the construction problem for hydrometeorological fields
JO  - Numerical methods and programming
PY  - 2018
SP  - 449
EP  - 463
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMP_2018_19_4_a11/
LA  - ru
ID  - VMP_2018_19_4_a11
ER  - 
%0 Journal Article
%A B. N. Ivanov
%T Adaptive smoothing approximation in the construction problem for hydrometeorological fields
%J Numerical methods and programming
%D 2018
%P 449-463
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMP_2018_19_4_a11/
%G ru
%F VMP_2018_19_4_a11
B. N. Ivanov. Adaptive smoothing approximation in the construction problem for hydrometeorological fields. Numerical methods and programming, Tome 19 (2018) no. 4, pp. 449-463. http://geodesic.mathdoc.fr/item/VMP_2018_19_4_a11/