Lagrangian coherent vortex structures and their numerical visualization
Numerical methods and programming, Tome 19 (2018) no. 3, pp. 293-313
Voir la notice de l'article provenant de la source Math-Net.Ru
Some issues related to the implementation and physico-mathematical support of computational experiments on the study of fluid and gas flows containing Lagrangian coherent vortex structures are considered. Methods and tools designed to visualize the vortex flows arising in various practical applications are discussed. Examples of visual representation of solutions to gas dynamics problems computed with Lagrangian approaches to the description of fluid and gas flows are given. In addition to the traditional approaches to the visualization of vortex flows based on the construction of contour curves of various flow quantities, the phase trajectories of Lagrangian particles, the Poincaré sections, and the local Lyapunov exponent method are applied.
Keywords:
computational fluid dynamics, scientific visualization, Lagrangian turbulence, Poincaré section, Lyapunov exponent.
Mots-clés : vortex, chaotic advection
Mots-clés : vortex, chaotic advection
@article{VMP_2018_19_3_a9,
author = {K. N. Volkov and V. N. Emelyanov and I. E. Kapranov and I. V. Teterina},
title = {Lagrangian coherent vortex structures and their numerical visualization},
journal = {Numerical methods and programming},
pages = {293--313},
publisher = {mathdoc},
volume = {19},
number = {3},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMP_2018_19_3_a9/}
}
TY - JOUR AU - K. N. Volkov AU - V. N. Emelyanov AU - I. E. Kapranov AU - I. V. Teterina TI - Lagrangian coherent vortex structures and their numerical visualization JO - Numerical methods and programming PY - 2018 SP - 293 EP - 313 VL - 19 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMP_2018_19_3_a9/ LA - ru ID - VMP_2018_19_3_a9 ER -
%0 Journal Article %A K. N. Volkov %A V. N. Emelyanov %A I. E. Kapranov %A I. V. Teterina %T Lagrangian coherent vortex structures and their numerical visualization %J Numerical methods and programming %D 2018 %P 293-313 %V 19 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VMP_2018_19_3_a9/ %G ru %F VMP_2018_19_3_a9
K. N. Volkov; V. N. Emelyanov; I. E. Kapranov; I. V. Teterina. Lagrangian coherent vortex structures and their numerical visualization. Numerical methods and programming, Tome 19 (2018) no. 3, pp. 293-313. http://geodesic.mathdoc.fr/item/VMP_2018_19_3_a9/