Numerical algorithms without saturation for the Schr\"odinger equation of hydrogen atom
Numerical methods and programming, Tome 19 (2018) no. 3, pp. 215-218.

Voir la notice de l'article provenant de la source Math-Net.Ru

Mathematically, the problem under consideration is reduced to the eigenvalue problem for the Laplace operator in the entire space with the Coulomb potential. The new mathematical apparatus developed by the author is applied to the numerical solution of the reduced problem. This problem is reduced to the eigenvalue problem in the unit ball punctured at the center after inversion with respect to the unit sphere. The null boundary condition at infinity is transformed to the condition at the center of the unit sphere. In the sphere it is possible to split off the periodic variable $\varphi$ and to construct the discretization inheriting the property of the separation of variables of the differential operator (the $h$-matrix). Eleven points is chosen based on the values of $\varphi$. The blocks $\Lambda_0$, $\Lambda_1$, $\Lambda_2$, $\Lambda_3$, $\Lambda_4$, and $\Lambda_5$ of the $h$-matrix correspond to the Lyman, Balmer, Paschen, Brackett, Pfund, and Humphreys lines. From the obtained numerical results, it follows that the Lyman-alpha line is determined with the accuracy equal to 5.43%. Thus, the coincidence of the numerical results with the theoretical values is satisfactory.
Keywords: numerical algorithms without saturation, Schrödinger equation, hydrogen atom.
@article{VMP_2018_19_3_a1,
     author = {S. D. Algazin},
     title = {Numerical algorithms without saturation for the {Schr\"odinger} equation of hydrogen atom},
     journal = {Numerical methods and programming},
     pages = {215--218},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMP_2018_19_3_a1/}
}
TY  - JOUR
AU  - S. D. Algazin
TI  - Numerical algorithms without saturation for the Schr\"odinger equation of hydrogen atom
JO  - Numerical methods and programming
PY  - 2018
SP  - 215
EP  - 218
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMP_2018_19_3_a1/
LA  - ru
ID  - VMP_2018_19_3_a1
ER  - 
%0 Journal Article
%A S. D. Algazin
%T Numerical algorithms without saturation for the Schr\"odinger equation of hydrogen atom
%J Numerical methods and programming
%D 2018
%P 215-218
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMP_2018_19_3_a1/
%G ru
%F VMP_2018_19_3_a1
S. D. Algazin. Numerical algorithms without saturation for the Schr\"odinger equation of hydrogen atom. Numerical methods and programming, Tome 19 (2018) no. 3, pp. 215-218. http://geodesic.mathdoc.fr/item/VMP_2018_19_3_a1/