A new algorithm for the optimization of transport networks subject to constraints
Numerical methods and programming, Tome 18 (2017) no. 2, pp. 158-168.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new heuristic algorithm of finding a minimum weighted Steiner tree is proposed. A transport network can be represented in the form of a directed weighted Steiner tree. Constraints are imposed on the maximal total length of communications from any terminal vertex to the root of the tree. A penalty function method is used to take the constraints into account. The effect of model parameters on the optimal network geometry is analyzed.
Keywords: transport networks, Steiner problem, graph algorithms, optimization, constrained problems.
@article{VMP_2017_18_2_a5,
     author = {A. A. {\CYRA}{\cyrn}{\cyra}{\cyrn}{\cyrsftsn}{\cyre}{\cyrv} and P. V. Lomovitskiy and D. V. Uzhegov and A. Khlyupin},
     title = {A new algorithm for the optimization of transport networks subject to constraints},
     journal = {Numerical methods and programming},
     pages = {158--168},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMP_2017_18_2_a5/}
}
TY  - JOUR
AU  - A. A. Ананьев
AU  - P. V. Lomovitskiy
AU  - D. V. Uzhegov
AU  - A. Khlyupin
TI  - A new algorithm for the optimization of transport networks subject to constraints
JO  - Numerical methods and programming
PY  - 2017
SP  - 158
EP  - 168
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMP_2017_18_2_a5/
LA  - ru
ID  - VMP_2017_18_2_a5
ER  - 
%0 Journal Article
%A A. A. Ананьев
%A P. V. Lomovitskiy
%A D. V. Uzhegov
%A A. Khlyupin
%T A new algorithm for the optimization of transport networks subject to constraints
%J Numerical methods and programming
%D 2017
%P 158-168
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMP_2017_18_2_a5/
%G ru
%F VMP_2017_18_2_a5
A. A. Ананьев; P. V. Lomovitskiy; D. V. Uzhegov; A. Khlyupin. A new algorithm for the optimization of transport networks subject to constraints. Numerical methods and programming, Tome 18 (2017) no. 2, pp. 158-168. http://geodesic.mathdoc.fr/item/VMP_2017_18_2_a5/