A new algorithm for the optimization of transport networks subject to constraints
Numerical methods and programming, Tome 18 (2017) no. 2, pp. 158-168
Voir la notice de l'article provenant de la source Math-Net.Ru
A new heuristic algorithm of finding a minimum weighted Steiner tree is proposed. A transport network can be represented in the form of a directed weighted Steiner tree. Constraints are imposed on the maximal total length of communications from any terminal vertex to the root of the tree. A penalty function method is used to take the constraints into account. The effect of model parameters on the optimal network geometry is analyzed.
Keywords:
transport networks, Steiner problem, graph algorithms, optimization, constrained problems.
@article{VMP_2017_18_2_a5,
author = {A. A. {\CYRA}{\cyrn}{\cyra}{\cyrn}{\cyrsftsn}{\cyre}{\cyrv} and P. V. Lomovitskiy and D. V. Uzhegov and A. Khlyupin},
title = {A new algorithm for the optimization of transport networks subject to constraints},
journal = {Numerical methods and programming},
pages = {158--168},
publisher = {mathdoc},
volume = {18},
number = {2},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMP_2017_18_2_a5/}
}
TY - JOUR AU - A. A. Ананьев AU - P. V. Lomovitskiy AU - D. V. Uzhegov AU - A. Khlyupin TI - A new algorithm for the optimization of transport networks subject to constraints JO - Numerical methods and programming PY - 2017 SP - 158 EP - 168 VL - 18 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMP_2017_18_2_a5/ LA - ru ID - VMP_2017_18_2_a5 ER -
%0 Journal Article %A A. A. Ананьев %A P. V. Lomovitskiy %A D. V. Uzhegov %A A. Khlyupin %T A new algorithm for the optimization of transport networks subject to constraints %J Numerical methods and programming %D 2017 %P 158-168 %V 18 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VMP_2017_18_2_a5/ %G ru %F VMP_2017_18_2_a5
A. A. Ананьев; P. V. Lomovitskiy; D. V. Uzhegov; A. Khlyupin. A new algorithm for the optimization of transport networks subject to constraints. Numerical methods and programming, Tome 18 (2017) no. 2, pp. 158-168. http://geodesic.mathdoc.fr/item/VMP_2017_18_2_a5/