A maximum principle for multiphase flow models
Numerical methods and programming, Tome 18 (2017) no. 2, pp. 138-145.

Voir la notice de l'article provenant de la source Math-Net.Ru

Two maximum principles for several multi-phase flow models are formulated and proved. The first one is valid for phase saturations in an incompressible two-phase flow model with constant viscosities. The second one is valid for the global pressure in two- and three-phase flow models with constant viscosities and is also valid for phase pressures in the case of zero capillary pressure.
Keywords: maximum principle, multi-phase flow, black oil model.
@article{VMP_2017_18_2_a3,
     author = {K. A. Novikov},
     title = {A maximum principle for multiphase flow models},
     journal = {Numerical methods and programming},
     pages = {138--145},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMP_2017_18_2_a3/}
}
TY  - JOUR
AU  - K. A. Novikov
TI  - A maximum principle for multiphase flow models
JO  - Numerical methods and programming
PY  - 2017
SP  - 138
EP  - 145
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMP_2017_18_2_a3/
LA  - ru
ID  - VMP_2017_18_2_a3
ER  - 
%0 Journal Article
%A K. A. Novikov
%T A maximum principle for multiphase flow models
%J Numerical methods and programming
%D 2017
%P 138-145
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMP_2017_18_2_a3/
%G ru
%F VMP_2017_18_2_a3
K. A. Novikov. A maximum principle for multiphase flow models. Numerical methods and programming, Tome 18 (2017) no. 2, pp. 138-145. http://geodesic.mathdoc.fr/item/VMP_2017_18_2_a3/