Artificial boundary conditions for numerical modeling of electron oscillations in plasma
Numerical methods and programming, Tome 18 (2017) no. 1, pp. 65-79.

Voir la notice de l'article provenant de la source Math-Net.Ru

The behavior of the functions describing the relativistic breaking effect of plane one-dimensional electron plasma oscillations is studied by asymptotic methods. The obtained formulas generate various forms of artificial boundary conditions which analyzed by numerical experiments. A special combination of the proposed boundary conditions is used to simulate the breaking effect in the spatially two-dimensional case. A part of computation was performed on the “Chebyshev” Moscow University supercomputer system.
Keywords: numerical modeling, breaking effect, artificial boundary conditions.
Mots-clés : plasma oscillations
@article{VMP_2017_18_1_a5,
     author = {E. V. Chizhonkov},
     title = {Artificial boundary conditions for numerical modeling of electron oscillations in plasma},
     journal = {Numerical methods and programming},
     pages = {65--79},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMP_2017_18_1_a5/}
}
TY  - JOUR
AU  - E. V. Chizhonkov
TI  - Artificial boundary conditions for numerical modeling of electron oscillations in plasma
JO  - Numerical methods and programming
PY  - 2017
SP  - 65
EP  - 79
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMP_2017_18_1_a5/
LA  - ru
ID  - VMP_2017_18_1_a5
ER  - 
%0 Journal Article
%A E. V. Chizhonkov
%T Artificial boundary conditions for numerical modeling of electron oscillations in plasma
%J Numerical methods and programming
%D 2017
%P 65-79
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMP_2017_18_1_a5/
%G ru
%F VMP_2017_18_1_a5
E. V. Chizhonkov. Artificial boundary conditions for numerical modeling of electron oscillations in plasma. Numerical methods and programming, Tome 18 (2017) no. 1, pp. 65-79. http://geodesic.mathdoc.fr/item/VMP_2017_18_1_a5/