Surface roughness of thin film atomistic nanometer-size clusters
Numerical methods and programming, Tome 17 (2016) no. 4, pp. 455-459.

Voir la notice de l'article provenant de la source Math-Net.Ru

An algorithm of surface roughness calculation for the thin film atomistic clusters obtained in numerical experiments is proposed. The algorithm is applied to silicon dioxide films. The thickness of deposited films is up to 70 nm. The deposition process simulation is performed using the classical molecular dynamics method with the DESIL force field developed earlier specially for high-energy deposition simulation. The dependence of surface roughness on the algorithm parameters, the temperature of the substrate, and the energy of deposited silicon atoms is studied.
Keywords: surface roughness, molecular dynamics, thin films, silicon dioxide structure.
@article{VMP_2016_17_4_a9,
     author = {G. F. Grigor'ev and V. B. Sulimov and A. V. Tikhonravov},
     title = {Surface roughness of thin film atomistic nanometer-size clusters},
     journal = {Numerical methods and programming},
     pages = {455--459},
     publisher = {mathdoc},
     volume = {17},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMP_2016_17_4_a9/}
}
TY  - JOUR
AU  - G. F. Grigor'ev
AU  - V. B. Sulimov
AU  - A. V. Tikhonravov
TI  - Surface roughness of thin film atomistic nanometer-size clusters
JO  - Numerical methods and programming
PY  - 2016
SP  - 455
EP  - 459
VL  - 17
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMP_2016_17_4_a9/
LA  - ru
ID  - VMP_2016_17_4_a9
ER  - 
%0 Journal Article
%A G. F. Grigor'ev
%A V. B. Sulimov
%A A. V. Tikhonravov
%T Surface roughness of thin film atomistic nanometer-size clusters
%J Numerical methods and programming
%D 2016
%P 455-459
%V 17
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMP_2016_17_4_a9/
%G ru
%F VMP_2016_17_4_a9
G. F. Grigor'ev; V. B. Sulimov; A. V. Tikhonravov. Surface roughness of thin film atomistic nanometer-size clusters. Numerical methods and programming, Tome 17 (2016) no. 4, pp. 455-459. http://geodesic.mathdoc.fr/item/VMP_2016_17_4_a9/