Study of properties of a finite-difference scheme for the advection stage implementation in the lattice Boltzmann method
Numerical methods and programming, Tome 17 (2016) no. 3, pp. 212-223
Voir la notice de l'article provenant de la source Math-Net.Ru
A finite-difference single-parameter scheme for solving the system of advection equations arising in the application of the method of splitting into physical processes to a system of kinetic equations is studied. The stability analysis is performed using the Neumann method. A stability domain in the “scheme's parameter-Courant number” plane is constructed. It is shown that an appropriate choice of this parameter allows one to regulate the dispersive and dissipative properties of the scheme. An approach of choosing the optimal parameter is proposed on the basis of an optimization of dispersive and dissipative surfaces. An efficiency of the scheme with the optimal parameter is illustrated by the numerical solution of the cavity flow problem and the problem on the propagation of shear waves in viscous fluid.
Keywords:
lattice Boltzmann method, splitting into physical processes, stability with respect to initial conditions, Neumann method.
Mots-clés : advection equation
Mots-clés : advection equation
@article{VMP_2016_17_3_a2,
author = {G. V. Krivovichev and E. S. Marnopolskaya},
title = {Study of properties of a finite-difference scheme for the advection stage implementation in the lattice {Boltzmann} method},
journal = {Numerical methods and programming},
pages = {212--223},
publisher = {mathdoc},
volume = {17},
number = {3},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMP_2016_17_3_a2/}
}
TY - JOUR AU - G. V. Krivovichev AU - E. S. Marnopolskaya TI - Study of properties of a finite-difference scheme for the advection stage implementation in the lattice Boltzmann method JO - Numerical methods and programming PY - 2016 SP - 212 EP - 223 VL - 17 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMP_2016_17_3_a2/ LA - ru ID - VMP_2016_17_3_a2 ER -
%0 Journal Article %A G. V. Krivovichev %A E. S. Marnopolskaya %T Study of properties of a finite-difference scheme for the advection stage implementation in the lattice Boltzmann method %J Numerical methods and programming %D 2016 %P 212-223 %V 17 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VMP_2016_17_3_a2/ %G ru %F VMP_2016_17_3_a2
G. V. Krivovichev; E. S. Marnopolskaya. Study of properties of a finite-difference scheme for the advection stage implementation in the lattice Boltzmann method. Numerical methods and programming, Tome 17 (2016) no. 3, pp. 212-223. http://geodesic.mathdoc.fr/item/VMP_2016_17_3_a2/