Solution of a model inverse spectral problem for the Sturm--Liouville operator on a graph
Numerical methods and programming, Tome 17 (2016) no. 3, pp. 204-211
Voir la notice de l'article provenant de la source Math-Net.Ru
A model inverse spectral problem for the Sturm–Liouville operator on a geometric graph is studied. This problem consists in finding $N$ parameters of the boundary conditions using its $N$ known eigenvalues. It is shown that the problem under consideration possess the property of a monotonic dependence of its eigenvalues on the parameters of the boundary conditions. This problem is reduced to a multiparameter inverse spectral problem for the operator in a finite-dimensional space. A new algorithm for the numerical solution of this problem is proposed.
Keywords:
spectral theory of differential operators, geometric graph, Sturm–Liouville operator, spectral problems.
@article{VMP_2016_17_3_a1,
author = {N. F. Valeev and Yu. V. Martynova and Ya. T. Sultanaev},
title = {Solution of a model inverse spectral problem for the {Sturm--Liouville} operator on a graph},
journal = {Numerical methods and programming},
pages = {204--211},
publisher = {mathdoc},
volume = {17},
number = {3},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMP_2016_17_3_a1/}
}
TY - JOUR AU - N. F. Valeev AU - Yu. V. Martynova AU - Ya. T. Sultanaev TI - Solution of a model inverse spectral problem for the Sturm--Liouville operator on a graph JO - Numerical methods and programming PY - 2016 SP - 204 EP - 211 VL - 17 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMP_2016_17_3_a1/ LA - ru ID - VMP_2016_17_3_a1 ER -
%0 Journal Article %A N. F. Valeev %A Yu. V. Martynova %A Ya. T. Sultanaev %T Solution of a model inverse spectral problem for the Sturm--Liouville operator on a graph %J Numerical methods and programming %D 2016 %P 204-211 %V 17 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VMP_2016_17_3_a1/ %G ru %F VMP_2016_17_3_a1
N. F. Valeev; Yu. V. Martynova; Ya. T. Sultanaev. Solution of a model inverse spectral problem for the Sturm--Liouville operator on a graph. Numerical methods and programming, Tome 17 (2016) no. 3, pp. 204-211. http://geodesic.mathdoc.fr/item/VMP_2016_17_3_a1/