An algorithm of packing congruent circles in a multiply connected set with non-Euclidean metrics
Numerical methods and programming, Tome 17 (2016) no. 2, pp. 177-188.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of optimal packing of congruent circles in a bounded set (a container) in a two-dimensional metric space is considered. It is required to find an arrangement of circles in the container such that these circles occupy the largest area of the container as possible. In the case when the space is Euclidean, this problem is well known, but the case of non-Euclidean metrics is studied much worse. However, there are some applied problems leading us to the use of special non-Euclidean metrics. For example, such a situation appears in the infrastructure logistics. Here we consider the optimal packing problem in the case when the container is simply or multiply connected. A special algorithm based on the optical-geometric approach is proposed and implemented. The results of numerical experiments are discussed.
Keywords: optimal packing of circles, optical-geometric approach, multiply connected domain, numerical method, computational experiment.
Mots-clés : non-Euclidean space
@article{VMP_2016_17_2_a4,
     author = {A. L. Kazakov and A. A. Lempert and G. L. Nguen},
     title = {An algorithm of packing congruent circles in a multiply connected set with {non-Euclidean} metrics},
     journal = {Numerical methods and programming},
     pages = {177--188},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMP_2016_17_2_a4/}
}
TY  - JOUR
AU  - A. L. Kazakov
AU  - A. A. Lempert
AU  - G. L. Nguen
TI  - An algorithm of packing congruent circles in a multiply connected set with non-Euclidean metrics
JO  - Numerical methods and programming
PY  - 2016
SP  - 177
EP  - 188
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMP_2016_17_2_a4/
LA  - ru
ID  - VMP_2016_17_2_a4
ER  - 
%0 Journal Article
%A A. L. Kazakov
%A A. A. Lempert
%A G. L. Nguen
%T An algorithm of packing congruent circles in a multiply connected set with non-Euclidean metrics
%J Numerical methods and programming
%D 2016
%P 177-188
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMP_2016_17_2_a4/
%G ru
%F VMP_2016_17_2_a4
A. L. Kazakov; A. A. Lempert; G. L. Nguen. An algorithm of packing congruent circles in a multiply connected set with non-Euclidean metrics. Numerical methods and programming, Tome 17 (2016) no. 2, pp. 177-188. http://geodesic.mathdoc.fr/item/VMP_2016_17_2_a4/