An approximation algorithm for the treatment of sound points in the CABARET scheme
Numerical methods and programming, Tome 17 (2016) no. 2, pp. 166-176.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new numerical approach to the calculation of flux variables on a new time layer in the CABARET (Compact Accurately Boundary Adjusting-REsolution Technique) scheme for the numerical solution of quasilinear hyperbolic differential equations is described. This approach allows one to uniformly treat all cases of sound points and does not violate the time reversibility properties of difference schemes in the absence of nonlinear correction of fluxes.
Keywords: systems of hyperbolic equations, shallow water equations with bottom topography, numerical methods, sound point
Mots-clés : CABARET scheme.
@article{VMP_2016_17_2_a3,
     author = {V. M. Goloviznin and A. V. Solov'ev and V. A. Isakov},
     title = {An approximation algorithm for the treatment of sound points in the {CABARET} scheme},
     journal = {Numerical methods and programming},
     pages = {166--176},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMP_2016_17_2_a3/}
}
TY  - JOUR
AU  - V. M. Goloviznin
AU  - A. V. Solov'ev
AU  - V. A. Isakov
TI  - An approximation algorithm for the treatment of sound points in the CABARET scheme
JO  - Numerical methods and programming
PY  - 2016
SP  - 166
EP  - 176
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMP_2016_17_2_a3/
LA  - ru
ID  - VMP_2016_17_2_a3
ER  - 
%0 Journal Article
%A V. M. Goloviznin
%A A. V. Solov'ev
%A V. A. Isakov
%T An approximation algorithm for the treatment of sound points in the CABARET scheme
%J Numerical methods and programming
%D 2016
%P 166-176
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMP_2016_17_2_a3/
%G ru
%F VMP_2016_17_2_a3
V. M. Goloviznin; A. V. Solov'ev; V. A. Isakov. An approximation algorithm for the treatment of sound points in the CABARET scheme. Numerical methods and programming, Tome 17 (2016) no. 2, pp. 166-176. http://geodesic.mathdoc.fr/item/VMP_2016_17_2_a3/