Construction of third-order schemes using Lagrange-Burmann expansions for the numerical integration of inviscid gas equations
Numerical methods and programming, Tome 17 (2016) no. 1, pp. 21-43.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proposed to construct several explicit third-order difference schemes for the hyperbolic conservation laws using the expansions of grid functions in Lagrange–Burmann series. The results of test computations for the one-dimensional advection equation and multidimensional Euler equations governing the inviscid compressible gas flows confirm the third order of accuracy of the constructed schemes. The quasi-monotonous profiles of numerical solutions are obtained.
Keywords: hyperbolic conservation laws, Lagrange–Burmann expansions, difference methods.
@article{VMP_2016_17_1_a3,
     author = {E. V. Vorozhtsov},
     title = {Construction of third-order schemes using {Lagrange-Burmann} expansions for the numerical integration of inviscid gas equations},
     journal = {Numerical methods and programming},
     pages = {21--43},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMP_2016_17_1_a3/}
}
TY  - JOUR
AU  - E. V. Vorozhtsov
TI  - Construction of third-order schemes using Lagrange-Burmann expansions for the numerical integration of inviscid gas equations
JO  - Numerical methods and programming
PY  - 2016
SP  - 21
EP  - 43
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMP_2016_17_1_a3/
LA  - ru
ID  - VMP_2016_17_1_a3
ER  - 
%0 Journal Article
%A E. V. Vorozhtsov
%T Construction of third-order schemes using Lagrange-Burmann expansions for the numerical integration of inviscid gas equations
%J Numerical methods and programming
%D 2016
%P 21-43
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMP_2016_17_1_a3/
%G ru
%F VMP_2016_17_1_a3
E. V. Vorozhtsov. Construction of third-order schemes using Lagrange-Burmann expansions for the numerical integration of inviscid gas equations. Numerical methods and programming, Tome 17 (2016) no. 1, pp. 21-43. http://geodesic.mathdoc.fr/item/VMP_2016_17_1_a3/