Construction of third-order schemes using Lagrange-Burmann expansions for the numerical integration of inviscid gas equations
Numerical methods and programming, Tome 17 (2016) no. 1, pp. 21-43
Cet article a éte moissonné depuis la source Math-Net.Ru
It is proposed to construct several explicit third-order difference schemes for the hyperbolic conservation laws using the expansions of grid functions in Lagrange–Burmann series. The results of test computations for the one-dimensional advection equation and multidimensional Euler equations governing the inviscid compressible gas flows confirm the third order of accuracy of the constructed schemes. The quasi-monotonous profiles of numerical solutions are obtained.
Keywords:
hyperbolic conservation laws, Lagrange–Burmann expansions, difference methods.
@article{VMP_2016_17_1_a3,
author = {E. V. Vorozhtsov},
title = {Construction of third-order schemes using {Lagrange-Burmann} expansions for the numerical integration of inviscid gas equations},
journal = {Numerical methods and programming},
pages = {21--43},
year = {2016},
volume = {17},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMP_2016_17_1_a3/}
}
TY - JOUR AU - E. V. Vorozhtsov TI - Construction of third-order schemes using Lagrange-Burmann expansions for the numerical integration of inviscid gas equations JO - Numerical methods and programming PY - 2016 SP - 21 EP - 43 VL - 17 IS - 1 UR - http://geodesic.mathdoc.fr/item/VMP_2016_17_1_a3/ LA - ru ID - VMP_2016_17_1_a3 ER -
%0 Journal Article %A E. V. Vorozhtsov %T Construction of third-order schemes using Lagrange-Burmann expansions for the numerical integration of inviscid gas equations %J Numerical methods and programming %D 2016 %P 21-43 %V 17 %N 1 %U http://geodesic.mathdoc.fr/item/VMP_2016_17_1_a3/ %G ru %F VMP_2016_17_1_a3
E. V. Vorozhtsov. Construction of third-order schemes using Lagrange-Burmann expansions for the numerical integration of inviscid gas equations. Numerical methods and programming, Tome 17 (2016) no. 1, pp. 21-43. http://geodesic.mathdoc.fr/item/VMP_2016_17_1_a3/