Increasing the interval of convergence for a generalized Newton's method of solving nonlinear equations
Numerical methods and programming, Tome 17 (2016) no. 1, pp. 7-12.

Voir la notice de l'article provenant de la source Math-Net.Ru

An approach to the construction of an extended interval of convergence for a previously proposed generalization of Newton's method to solve nonlinear equations of one variable. This approach is based on the boundedness of a continuous function defined on a segment. It is proved that, for the search for the real roots of a real-valued polynomial with complex roots, the proposed approach provides iterations with nonlocal convergence. This result is generalized to the case transcendental equations.
Keywords: iterative processes, Newton's method, logarithmic derivative, continuous functions defined on a segment, higher order methods
Mots-clés : interval of convergence, transcendental equations.
@article{VMP_2016_17_1_a1,
     author = {A. N. Gromov},
     title = {Increasing the interval of convergence for a generalized {Newton's} method of solving nonlinear equations},
     journal = {Numerical methods and programming},
     pages = {7--12},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMP_2016_17_1_a1/}
}
TY  - JOUR
AU  - A. N. Gromov
TI  - Increasing the interval of convergence for a generalized Newton's method of solving nonlinear equations
JO  - Numerical methods and programming
PY  - 2016
SP  - 7
EP  - 12
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMP_2016_17_1_a1/
LA  - ru
ID  - VMP_2016_17_1_a1
ER  - 
%0 Journal Article
%A A. N. Gromov
%T Increasing the interval of convergence for a generalized Newton's method of solving nonlinear equations
%J Numerical methods and programming
%D 2016
%P 7-12
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMP_2016_17_1_a1/
%G ru
%F VMP_2016_17_1_a1
A. N. Gromov. Increasing the interval of convergence for a generalized Newton's method of solving nonlinear equations. Numerical methods and programming, Tome 17 (2016) no. 1, pp. 7-12. http://geodesic.mathdoc.fr/item/VMP_2016_17_1_a1/