Intermittency of vector fields and natural random number generators
Numerical methods and programming, Tome 17 (2016) no. 1, pp. 1-6.

Voir la notice de l'article provenant de la source Math-Net.Ru

Growth of Jacobi fields on geodesic lines over a 2D manifold with Gaussian curvature as a random process is considered. We study various “natural” random number generators on the basis of the hypothesis that the decimals of irrational numbers are randomly distributed.
Keywords: intermittency, vector field, random numbers, Lyapunov exponent.
Mots-clés : Jacobi equation
@article{VMP_2016_17_1_a0,
     author = {A. O. Kalinin and D. D. Sokoloff},
     title = {Intermittency of vector fields and natural random number generators},
     journal = {Numerical methods and programming},
     pages = {1--6},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMP_2016_17_1_a0/}
}
TY  - JOUR
AU  - A. O. Kalinin
AU  - D. D. Sokoloff
TI  - Intermittency of vector fields and natural random number generators
JO  - Numerical methods and programming
PY  - 2016
SP  - 1
EP  - 6
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMP_2016_17_1_a0/
LA  - ru
ID  - VMP_2016_17_1_a0
ER  - 
%0 Journal Article
%A A. O. Kalinin
%A D. D. Sokoloff
%T Intermittency of vector fields and natural random number generators
%J Numerical methods and programming
%D 2016
%P 1-6
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMP_2016_17_1_a0/
%G ru
%F VMP_2016_17_1_a0
A. O. Kalinin; D. D. Sokoloff. Intermittency of vector fields and natural random number generators. Numerical methods and programming, Tome 17 (2016) no. 1, pp. 1-6. http://geodesic.mathdoc.fr/item/VMP_2016_17_1_a0/