Intermittency of vector fields and natural random number generators
Numerical methods and programming, Tome 17 (2016) no. 1, pp. 1-6
Voir la notice de l'article provenant de la source Math-Net.Ru
Growth of Jacobi fields on geodesic lines over a 2D manifold with Gaussian curvature as a random process is considered. We study various “natural” random number generators on the basis of the hypothesis that the decimals of irrational numbers are randomly distributed.
Keywords:
intermittency, vector field, random numbers, Lyapunov exponent.
Mots-clés : Jacobi equation
Mots-clés : Jacobi equation
@article{VMP_2016_17_1_a0,
author = {A. O. Kalinin and D. D. Sokoloff},
title = {Intermittency of vector fields and natural random number generators},
journal = {Numerical methods and programming},
pages = {1--6},
publisher = {mathdoc},
volume = {17},
number = {1},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMP_2016_17_1_a0/}
}
TY - JOUR AU - A. O. Kalinin AU - D. D. Sokoloff TI - Intermittency of vector fields and natural random number generators JO - Numerical methods and programming PY - 2016 SP - 1 EP - 6 VL - 17 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMP_2016_17_1_a0/ LA - ru ID - VMP_2016_17_1_a0 ER -
A. O. Kalinin; D. D. Sokoloff. Intermittency of vector fields and natural random number generators. Numerical methods and programming, Tome 17 (2016) no. 1, pp. 1-6. http://geodesic.mathdoc.fr/item/VMP_2016_17_1_a0/