Composition of infinitary structures
Numerical methods and programming, Tome 16 (2015) no. 4, pp. 557-565
Cet article a éte moissonné depuis la source Math-Net.Ru
The infinitary structure of an $n$-cube, global $k$-ary trees, and natural numbers are considered as a single genetic structure. A number of geometric characteristics of the shortest paths in an $n$-cube are specified and the properties of prime number symmetry among the natural numbers are studied on the basis of this structure.
Mots-clés :
$n$-куб
Keywords: $n$-cube, global $k$-ary tree, $k$-tuples of natural numbers, difference tabloid, symmetry of prime numbers, incompatibility relatio.
Mots-clés : symbolic matrix
Keywords: $n$-cube, global $k$-ary tree, $k$-tuples of natural numbers, difference tabloid, symmetry of prime numbers, incompatibility relatio.
Mots-clés : symbolic matrix
@article{VMP_2015_16_4_a9,
author = {G. G. Ryabov and V. A. Serov},
title = {Composition of infinitary structures},
journal = {Numerical methods and programming},
pages = {557--565},
year = {2015},
volume = {16},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMP_2015_16_4_a9/}
}
G. G. Ryabov; V. A. Serov. Composition of infinitary structures. Numerical methods and programming, Tome 16 (2015) no. 4, pp. 557-565. http://geodesic.mathdoc.fr/item/VMP_2015_16_4_a9/