Parallel forming of preconditioners based on the approximation of the Sherman-Morrison inversion formula
Numerical methods and programming, Tome 16 (2015) no. 1, pp. 86-93
Voir la notice de l'article provenant de la source Math-Net.Ru
Acceleration of preconditioned bi-conjugate gradient stabilized (BiCGStab) methods with preconditioners based on the matrix approximation by the Sherman-Morrison inversion formula is studied. A new form of the parallel algorithm using matrix-vector products to generate preconditioning matrices is proposed. A parallelization efficiency of the most resource-intensive operations of such preconditioners on multi-core central and graphics processing units (CPUs and GPUs) is shown.
Keywords:
linear systems, explicit preconditioning, Sherman-Morrison formula, parallel computing, graphics accelerators.
@article{VMP_2015_16_1_a8,
author = {N. S. Nedozhogin and S. P. Kopysov and A. K. Novikov},
title = {Parallel forming of preconditioners based on the approximation of the {Sherman-Morrison} inversion formula},
journal = {Numerical methods and programming},
pages = {86--93},
publisher = {mathdoc},
volume = {16},
number = {1},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMP_2015_16_1_a8/}
}
TY - JOUR AU - N. S. Nedozhogin AU - S. P. Kopysov AU - A. K. Novikov TI - Parallel forming of preconditioners based on the approximation of the Sherman-Morrison inversion formula JO - Numerical methods and programming PY - 2015 SP - 86 EP - 93 VL - 16 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMP_2015_16_1_a8/ LA - ru ID - VMP_2015_16_1_a8 ER -
%0 Journal Article %A N. S. Nedozhogin %A S. P. Kopysov %A A. K. Novikov %T Parallel forming of preconditioners based on the approximation of the Sherman-Morrison inversion formula %J Numerical methods and programming %D 2015 %P 86-93 %V 16 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VMP_2015_16_1_a8/ %G ru %F VMP_2015_16_1_a8
N. S. Nedozhogin; S. P. Kopysov; A. K. Novikov. Parallel forming of preconditioners based on the approximation of the Sherman-Morrison inversion formula. Numerical methods and programming, Tome 16 (2015) no. 1, pp. 86-93. http://geodesic.mathdoc.fr/item/VMP_2015_16_1_a8/