Gradient methods for solving inverse gravimetry and magnetometry problems on the Uran supercomputer
Numerical methods and programming, Tome 16 (2015) no. 1, pp. 155-164.

Voir la notice de l'article provenant de la source Math-Net.Ru

A modified linearized steepest descent method with variable weight factors is proposed to solve three-dimensional structural inverse gravimetry and magnetometry problems of finding the interfaces between constant density or magnetization layers in a multilayer medium. A linearized conjugate gradient method and its modified version with weight factors for solving the gravimetry and magnetometry problems in a multilayer medium is constructed. On the basis of the modified gradient-type methods, a number of efficient parallel algorithms are numerically implemented on an Intel multi-core processor and NVIDIA GPUs. The developed parallel iterative algorithms are compared for a model problem in terms of the relative error, the number of iterations, and the execution time.
Keywords: inverse gravimetry and magnetometry problems, parallel algorithms, gradient-type methods, multi-core and graphics processors.
@article{VMP_2015_16_1_a15,
     author = {E. N. Akimova and V. E. Misilov and A. F. Skurydina and A. I. Tret'yakov},
     title = {Gradient methods for solving inverse gravimetry and magnetometry problems on the {Uran} supercomputer},
     journal = {Numerical methods and programming},
     pages = {155--164},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMP_2015_16_1_a15/}
}
TY  - JOUR
AU  - E. N. Akimova
AU  - V. E. Misilov
AU  - A. F. Skurydina
AU  - A. I. Tret'yakov
TI  - Gradient methods for solving inverse gravimetry and magnetometry problems on the Uran supercomputer
JO  - Numerical methods and programming
PY  - 2015
SP  - 155
EP  - 164
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMP_2015_16_1_a15/
LA  - ru
ID  - VMP_2015_16_1_a15
ER  - 
%0 Journal Article
%A E. N. Akimova
%A V. E. Misilov
%A A. F. Skurydina
%A A. I. Tret'yakov
%T Gradient methods for solving inverse gravimetry and magnetometry problems on the Uran supercomputer
%J Numerical methods and programming
%D 2015
%P 155-164
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMP_2015_16_1_a15/
%G ru
%F VMP_2015_16_1_a15
E. N. Akimova; V. E. Misilov; A. F. Skurydina; A. I. Tret'yakov. Gradient methods for solving inverse gravimetry and magnetometry problems on the Uran supercomputer. Numerical methods and programming, Tome 16 (2015) no. 1, pp. 155-164. http://geodesic.mathdoc.fr/item/VMP_2015_16_1_a15/