Gradient methods for solving inverse gravimetry and magnetometry problems on the Uran supercomputer
Numerical methods and programming, Tome 16 (2015) no. 1, pp. 155-164
Voir la notice de l'article provenant de la source Math-Net.Ru
A modified linearized steepest descent method with variable weight factors is proposed to solve three-dimensional structural inverse gravimetry and magnetometry problems of finding the interfaces between constant density or magnetization layers in a multilayer medium. A linearized conjugate gradient method and its modified version with weight factors for solving the gravimetry and magnetometry problems in a multilayer medium is constructed. On the basis of the modified gradient-type methods, a number of efficient parallel algorithms are numerically implemented on an Intel multi-core processor and NVIDIA GPUs. The developed parallel iterative algorithms are compared for a model problem in terms of the relative error, the number of iterations, and the execution time.
Keywords:
inverse gravimetry and magnetometry problems, parallel algorithms, gradient-type methods, multi-core and graphics processors.
@article{VMP_2015_16_1_a15,
author = {E. N. Akimova and V. E. Misilov and A. F. Skurydina and A. I. Tret'yakov},
title = {Gradient methods for solving inverse gravimetry and magnetometry problems on the {Uran} supercomputer},
journal = {Numerical methods and programming},
pages = {155--164},
publisher = {mathdoc},
volume = {16},
number = {1},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMP_2015_16_1_a15/}
}
TY - JOUR AU - E. N. Akimova AU - V. E. Misilov AU - A. F. Skurydina AU - A. I. Tret'yakov TI - Gradient methods for solving inverse gravimetry and magnetometry problems on the Uran supercomputer JO - Numerical methods and programming PY - 2015 SP - 155 EP - 164 VL - 16 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMP_2015_16_1_a15/ LA - ru ID - VMP_2015_16_1_a15 ER -
%0 Journal Article %A E. N. Akimova %A V. E. Misilov %A A. F. Skurydina %A A. I. Tret'yakov %T Gradient methods for solving inverse gravimetry and magnetometry problems on the Uran supercomputer %J Numerical methods and programming %D 2015 %P 155-164 %V 16 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VMP_2015_16_1_a15/ %G ru %F VMP_2015_16_1_a15
E. N. Akimova; V. E. Misilov; A. F. Skurydina; A. I. Tret'yakov. Gradient methods for solving inverse gravimetry and magnetometry problems on the Uran supercomputer. Numerical methods and programming, Tome 16 (2015) no. 1, pp. 155-164. http://geodesic.mathdoc.fr/item/VMP_2015_16_1_a15/