Application of predictor-corrector finite-difference-based schemes in the lattice Boltzmann method
Numerical methods and programming, Tome 16 (2015) no. 1, pp. 10-17
Voir la notice de l'article provenant de la source Math-Net.Ru
Predictor-corrector finite-difference-based lattice Boltzmann schemes are proposed. An approach with separate approximation of spatial derivatives in the convective terms of kinetic equations and an approach when these terms are replaced by a single finite difference are considered. Explicit finite-difference schemes are used at both the stages of the computation process. The cavity flow problem and the Taylor vortex problem are solved numerically in a wide range of the Reynolds number. It is shown that the proposed schemes allow a larger time step compared to other known schemes.
Keywords:
lattice Boltzmann method, kinetic equations, predictor-corrector, cavity flow problem, Taylor vortices.
@article{VMP_2015_16_1_a1,
author = {G. V. Krivovichev and E. V. Voskoboinikova},
title = {Application of predictor-corrector finite-difference-based schemes in the lattice {Boltzmann} method},
journal = {Numerical methods and programming},
pages = {10--17},
publisher = {mathdoc},
volume = {16},
number = {1},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMP_2015_16_1_a1/}
}
TY - JOUR AU - G. V. Krivovichev AU - E. V. Voskoboinikova TI - Application of predictor-corrector finite-difference-based schemes in the lattice Boltzmann method JO - Numerical methods and programming PY - 2015 SP - 10 EP - 17 VL - 16 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMP_2015_16_1_a1/ LA - ru ID - VMP_2015_16_1_a1 ER -
%0 Journal Article %A G. V. Krivovichev %A E. V. Voskoboinikova %T Application of predictor-corrector finite-difference-based schemes in the lattice Boltzmann method %J Numerical methods and programming %D 2015 %P 10-17 %V 16 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VMP_2015_16_1_a1/ %G ru %F VMP_2015_16_1_a1
G. V. Krivovichev; E. V. Voskoboinikova. Application of predictor-corrector finite-difference-based schemes in the lattice Boltzmann method. Numerical methods and programming, Tome 16 (2015) no. 1, pp. 10-17. http://geodesic.mathdoc.fr/item/VMP_2015_16_1_a1/