New a posteriori error estimates for approximate solutions to iregular operator equations
Numerical methods and programming, Tome 15 (2014) no. 2, pp. 359-369.

Voir la notice de l'article provenant de la source Math-Net.Ru

A brief overview of developed up to date a posteriori error estimates for approximate solutions to irregular operator equations is given. Among them are a posteriori estimates for some descriptive expanding compacts (A.G. Yagola, etc.), the evaluation using a posteriori residual values and regularizing functionals (A.S. Leonov), the estimates with more detailed a priori assumptions about solutions (A.B. Bakushinsky, etc.), estimating the accuracy of solutions to coefficient inverse problems for partial differential equations using the specifics of the Tikhonov regularization and the adaptive finite element method (L. Beilina, M. Klibanov, etc.). In this paper a new method for a posteriori estimates of the accuracy of approximate solutions calculated using the iterative procedures for irregular operator equations is proposed. The estimates are found using other a posteriori functionals of approximate solutions than in the overviewed papers. In this method, one can track the evolution of a posteriori estimates in solving the equation, which allows one to draw conclusions about iteration convergence and to introduce adequate improvements in the iterative procedures during their implementation.
Keywords: irregular operator equations, a posteriori estimation of the accuracy, iteratively regularized processes of Gauss-Newton type.
@article{VMP_2014_15_2_a14,
     author = {A. B. Bakushinskii and A. S. Leonov},
     title = {New a posteriori error estimates for approximate solutions to iregular operator equations},
     journal = {Numerical methods and programming},
     pages = {359--369},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMP_2014_15_2_a14/}
}
TY  - JOUR
AU  - A. B. Bakushinskii
AU  - A. S. Leonov
TI  - New a posteriori error estimates for approximate solutions to iregular operator equations
JO  - Numerical methods and programming
PY  - 2014
SP  - 359
EP  - 369
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMP_2014_15_2_a14/
LA  - ru
ID  - VMP_2014_15_2_a14
ER  - 
%0 Journal Article
%A A. B. Bakushinskii
%A A. S. Leonov
%T New a posteriori error estimates for approximate solutions to iregular operator equations
%J Numerical methods and programming
%D 2014
%P 359-369
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMP_2014_15_2_a14/
%G ru
%F VMP_2014_15_2_a14
A. B. Bakushinskii; A. S. Leonov. New a posteriori error estimates for approximate solutions to iregular operator equations. Numerical methods and programming, Tome 15 (2014) no. 2, pp. 359-369. http://geodesic.mathdoc.fr/item/VMP_2014_15_2_a14/