Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VMP_2014_15_2_a14, author = {A. B. Bakushinskii and A. S. Leonov}, title = {New a posteriori error estimates for approximate solutions to iregular operator equations}, journal = {Numerical methods and programming}, pages = {359--369}, publisher = {mathdoc}, volume = {15}, number = {2}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VMP_2014_15_2_a14/} }
TY - JOUR AU - A. B. Bakushinskii AU - A. S. Leonov TI - New a posteriori error estimates for approximate solutions to iregular operator equations JO - Numerical methods and programming PY - 2014 SP - 359 EP - 369 VL - 15 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMP_2014_15_2_a14/ LA - ru ID - VMP_2014_15_2_a14 ER -
%0 Journal Article %A A. B. Bakushinskii %A A. S. Leonov %T New a posteriori error estimates for approximate solutions to iregular operator equations %J Numerical methods and programming %D 2014 %P 359-369 %V 15 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VMP_2014_15_2_a14/ %G ru %F VMP_2014_15_2_a14
A. B. Bakushinskii; A. S. Leonov. New a posteriori error estimates for approximate solutions to iregular operator equations. Numerical methods and programming, Tome 15 (2014) no. 2, pp. 359-369. http://geodesic.mathdoc.fr/item/VMP_2014_15_2_a14/