Bi-Newton's method for computing spectral projectors
Numerical methods and programming, Tome 15 (2014) no. 1, pp. 121-129.

Voir la notice de l'article provenant de la source Math-Net.Ru

An efficient Newton-like method for computing the spectral projector associated with a separated group of eigenvalues near a specified shift of a large sparse matrix is proposed and justified. A number of numerical experiments with a discrete analogue of the non-Hermitian elliptic operator are discussed.
Keywords: Newton's method, inverse iterations, tuning, invariant subspace, spectral projector.
@article{VMP_2014_15_1_a11,
     author = {K. V. Demyanko and Yu. M. Nechepurenko},
     title = {Bi-Newton's method for computing spectral projectors},
     journal = {Numerical methods and programming},
     pages = {121--129},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMP_2014_15_1_a11/}
}
TY  - JOUR
AU  - K. V. Demyanko
AU  - Yu. M. Nechepurenko
TI  - Bi-Newton's method for computing spectral projectors
JO  - Numerical methods and programming
PY  - 2014
SP  - 121
EP  - 129
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMP_2014_15_1_a11/
LA  - ru
ID  - VMP_2014_15_1_a11
ER  - 
%0 Journal Article
%A K. V. Demyanko
%A Yu. M. Nechepurenko
%T Bi-Newton's method for computing spectral projectors
%J Numerical methods and programming
%D 2014
%P 121-129
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMP_2014_15_1_a11/
%G ru
%F VMP_2014_15_1_a11
K. V. Demyanko; Yu. M. Nechepurenko. Bi-Newton's method for computing spectral projectors. Numerical methods and programming, Tome 15 (2014) no. 1, pp. 121-129. http://geodesic.mathdoc.fr/item/VMP_2014_15_1_a11/