Diagonal constructions in an $n$-cube
Numerical methods and programming, Tome 14 (2013) no. 4, pp. 496-502.

Voir la notice de l'article provenant de la source Math-Net.Ru

An extension of the constructive world of cubical structures is considered on the basis of a bijective mapping of $k$-dimensional faces for an $n$-cube into words over a finite alphabet. In essence, this extension realizes symbolic computing and is intended for the representations of diagonal constructions in an $n$-cube and operations over them.
Keywords: bijective mapping; finite alphabet; cubants; diagonal constructions; digit-to-digit (symbol) operations; half-integer points.
@article{VMP_2013_14_4_a7,
     author = {G. G. Ryabov and V. A. Serov},
     title = {Diagonal constructions in an $n$-cube},
     journal = {Numerical methods and programming},
     pages = {496--502},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMP_2013_14_4_a7/}
}
TY  - JOUR
AU  - G. G. Ryabov
AU  - V. A. Serov
TI  - Diagonal constructions in an $n$-cube
JO  - Numerical methods and programming
PY  - 2013
SP  - 496
EP  - 502
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMP_2013_14_4_a7/
LA  - ru
ID  - VMP_2013_14_4_a7
ER  - 
%0 Journal Article
%A G. G. Ryabov
%A V. A. Serov
%T Diagonal constructions in an $n$-cube
%J Numerical methods and programming
%D 2013
%P 496-502
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMP_2013_14_4_a7/
%G ru
%F VMP_2013_14_4_a7
G. G. Ryabov; V. A. Serov. Diagonal constructions in an $n$-cube. Numerical methods and programming, Tome 14 (2013) no. 4, pp. 496-502. http://geodesic.mathdoc.fr/item/VMP_2013_14_4_a7/