Using Lagrange principle for solving linear ill-posed problems with a priori information
Numerical methods and programming, Tome 14 (2013) no. 4, pp. 468-482.

Voir la notice de l'article provenant de la source Math-Net.Ru

Linear ill-posed problems with a priori information on the exact solution are considered. Using the method of extending compacts, the Lagrange principle and the optimal recovery theory, we propose a method for constructing an optimal regularization algorithm for solving linear ill-posed problems with sourcewise representable solutions and a method of calculating the corresponding optimal worst a posteriori error estimate of the proposed method. A numerical simulation of a heat equation is also considered. This work was partially supported by the Russian Foundation for Basic Research (projects 11-01-00040, 12-01-00524 and 12-01-91153-NFSCa).
Keywords: ill-posed problems; regularization algorithms; optimal recovery; Lagrange principle; regularization parameter.
@article{VMP_2013_14_4_a5,
     author = {Y. Zhang and D. V. Luk'yanenko and A. G. Yagola},
     title = {Using {Lagrange} principle for solving linear ill-posed problems with a priori information},
     journal = {Numerical methods and programming},
     pages = {468--482},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMP_2013_14_4_a5/}
}
TY  - JOUR
AU  - Y. Zhang
AU  - D. V. Luk'yanenko
AU  - A. G. Yagola
TI  - Using Lagrange principle for solving linear ill-posed problems with a priori information
JO  - Numerical methods and programming
PY  - 2013
SP  - 468
EP  - 482
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMP_2013_14_4_a5/
LA  - ru
ID  - VMP_2013_14_4_a5
ER  - 
%0 Journal Article
%A Y. Zhang
%A D. V. Luk'yanenko
%A A. G. Yagola
%T Using Lagrange principle for solving linear ill-posed problems with a priori information
%J Numerical methods and programming
%D 2013
%P 468-482
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMP_2013_14_4_a5/
%G ru
%F VMP_2013_14_4_a5
Y. Zhang; D. V. Luk'yanenko; A. G. Yagola. Using Lagrange principle for solving linear ill-posed problems with a priori information. Numerical methods and programming, Tome 14 (2013) no. 4, pp. 468-482. http://geodesic.mathdoc.fr/item/VMP_2013_14_4_a5/