The structure of a stable manifold for fully implicit schemes
Numerical methods and programming, Tome 14 (2013) no. 1, pp. 44-49.

Voir la notice de l'article provenant de la source Math-Net.Ru

An analog of the Hadamard-Perron theorem on the existence of a local stable manifold in a neighborhood of a fixed hyperbolic-type point for implicit mappings is proved. This result allows one to constructively study the structure of a manifold for a finite-difference approximation in time in the case of quasilinear parabolic-type equations and to prove that, in terms of the integral metric, the manifold of the nonlinear problem exists in an unbounded ellipsoid. Several theoretical estimates are given. A number of numerical results are discussed.
Keywords: stabilization; numerical algorithms; implicit finite-difference schemes.
@article{VMP_2013_14_1_a6,
     author = {E. Yu. Vedernikova and A. A. Kornev},
     title = {The structure of a stable manifold for fully implicit schemes},
     journal = {Numerical methods and programming},
     pages = {44--49},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMP_2013_14_1_a6/}
}
TY  - JOUR
AU  - E. Yu. Vedernikova
AU  - A. A. Kornev
TI  - The structure of a stable manifold for fully implicit schemes
JO  - Numerical methods and programming
PY  - 2013
SP  - 44
EP  - 49
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMP_2013_14_1_a6/
LA  - ru
ID  - VMP_2013_14_1_a6
ER  - 
%0 Journal Article
%A E. Yu. Vedernikova
%A A. A. Kornev
%T The structure of a stable manifold for fully implicit schemes
%J Numerical methods and programming
%D 2013
%P 44-49
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMP_2013_14_1_a6/
%G ru
%F VMP_2013_14_1_a6
E. Yu. Vedernikova; A. A. Kornev. The structure of a stable manifold for fully implicit schemes. Numerical methods and programming, Tome 14 (2013) no. 1, pp. 44-49. http://geodesic.mathdoc.fr/item/VMP_2013_14_1_a6/