The structure of a stable manifold for fully implicit schemes
Numerical methods and programming, Tome 14 (2013) no. 1, pp. 44-49
Voir la notice de l'article provenant de la source Math-Net.Ru
An analog of the Hadamard-Perron theorem on the existence of a local stable manifold in a neighborhood of a fixed hyperbolic-type point for implicit mappings is proved. This result allows one to constructively study the structure of a manifold for a finite-difference approximation in time in the case of quasilinear parabolic-type equations and to prove that, in terms of the integral metric, the manifold of the nonlinear problem exists in an unbounded ellipsoid. Several theoretical estimates are given. A number of numerical results are discussed.
Keywords:
stabilization; numerical algorithms; implicit finite-difference schemes.
@article{VMP_2013_14_1_a6,
author = {E. Yu. Vedernikova and A. A. Kornev},
title = {The structure of a stable manifold for fully implicit schemes},
journal = {Numerical methods and programming},
pages = {44--49},
publisher = {mathdoc},
volume = {14},
number = {1},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMP_2013_14_1_a6/}
}
TY - JOUR AU - E. Yu. Vedernikova AU - A. A. Kornev TI - The structure of a stable manifold for fully implicit schemes JO - Numerical methods and programming PY - 2013 SP - 44 EP - 49 VL - 14 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMP_2013_14_1_a6/ LA - ru ID - VMP_2013_14_1_a6 ER -
E. Yu. Vedernikova; A. A. Kornev. The structure of a stable manifold for fully implicit schemes. Numerical methods and programming, Tome 14 (2013) no. 1, pp. 44-49. http://geodesic.mathdoc.fr/item/VMP_2013_14_1_a6/