Stationary distribution for the Jacobi equation with a large random curvature parameter
Numerical methods and programming, Tome 14 (2013) no. 1, pp. 38-43 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A generalization of the results obtained previously for the case when the curvature parameter of the Jacobi equation is a random quantity distributed on a large or infinite interval is proposed. In this case the realization of the numerical algorithm for finding the stationary measure has some features compared to the previously introduced method. These features are mainly due to the finite numerical accuracy and are discussed in this paper together with the corresponding distributions. These distributions are used to calculate the Lyapunov exponent and the growth rate of statistical moments of the Jacobi field.
Keywords: stationary distribution; product of matrices; integral equation; Jacobi equation.
@article{VMP_2013_14_1_a5,
     author = {E. A. Illarionov},
     title = {Stationary distribution for the {Jacobi} equation with a large random curvature parameter},
     journal = {Numerical methods and programming},
     pages = {38--43},
     year = {2013},
     volume = {14},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMP_2013_14_1_a5/}
}
TY  - JOUR
AU  - E. A. Illarionov
TI  - Stationary distribution for the Jacobi equation with a large random curvature parameter
JO  - Numerical methods and programming
PY  - 2013
SP  - 38
EP  - 43
VL  - 14
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMP_2013_14_1_a5/
LA  - ru
ID  - VMP_2013_14_1_a5
ER  - 
%0 Journal Article
%A E. A. Illarionov
%T Stationary distribution for the Jacobi equation with a large random curvature parameter
%J Numerical methods and programming
%D 2013
%P 38-43
%V 14
%N 1
%U http://geodesic.mathdoc.fr/item/VMP_2013_14_1_a5/
%G ru
%F VMP_2013_14_1_a5
E. A. Illarionov. Stationary distribution for the Jacobi equation with a large random curvature parameter. Numerical methods and programming, Tome 14 (2013) no. 1, pp. 38-43. http://geodesic.mathdoc.fr/item/VMP_2013_14_1_a5/