On cubature formulas exact for Haar polynomials in the case of two-variable functions satisfying the general Lipschitz condition
Numerical methods and programming, Tome 14 (2013) no. 1, pp. 132-140
Cet article a éte moissonné depuis la source Math-Net.Ru
A number of upper error estimates are obtained for the cubature formulas possessing the Haar $d$-property in the case of two-variable functions belonging to the $\operatorname{Lip}(L_1,L_2)$ classes and satisfying the general Lipschitz condition. It is shown that, on the classes under consideration, the errors of the minimal cubature formulas possessing the Haar $d$-property have the best convergence rate to zero.
Keywords:
Haar $d$-property; errors of cubature formulas; $\operatorname{Lip}(L_1,L_2)$ classes of functions.
@article{VMP_2013_14_1_a15,
author = {K. A. Kirillov},
title = {On cubature formulas exact for {Haar} polynomials in the case of two-variable functions satisfying the general {Lipschitz} condition},
journal = {Numerical methods and programming},
pages = {132--140},
year = {2013},
volume = {14},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMP_2013_14_1_a15/}
}
TY - JOUR AU - K. A. Kirillov TI - On cubature formulas exact for Haar polynomials in the case of two-variable functions satisfying the general Lipschitz condition JO - Numerical methods and programming PY - 2013 SP - 132 EP - 140 VL - 14 IS - 1 UR - http://geodesic.mathdoc.fr/item/VMP_2013_14_1_a15/ LA - ru ID - VMP_2013_14_1_a15 ER -
%0 Journal Article %A K. A. Kirillov %T On cubature formulas exact for Haar polynomials in the case of two-variable functions satisfying the general Lipschitz condition %J Numerical methods and programming %D 2013 %P 132-140 %V 14 %N 1 %U http://geodesic.mathdoc.fr/item/VMP_2013_14_1_a15/ %G ru %F VMP_2013_14_1_a15
K. A. Kirillov. On cubature formulas exact for Haar polynomials in the case of two-variable functions satisfying the general Lipschitz condition. Numerical methods and programming, Tome 14 (2013) no. 1, pp. 132-140. http://geodesic.mathdoc.fr/item/VMP_2013_14_1_a15/