On cubature formulas exact for Haar polynomials in the case of two-variable functions satisfying the general Lipschitz condition
Numerical methods and programming, Tome 14 (2013) no. 1, pp. 132-140.

Voir la notice de l'article provenant de la source Math-Net.Ru

A number of upper error estimates are obtained for the cubature formulas possessing the Haar $d$-property in the case of two-variable functions belonging to the $\operatorname{Lip}(L_1,L_2)$ classes and satisfying the general Lipschitz condition. It is shown that, on the classes under consideration, the errors of the minimal cubature formulas possessing the Haar $d$-property have the best convergence rate to zero.
Keywords: Haar $d$-property; errors of cubature formulas; $\operatorname{Lip}(L_1,L_2)$ classes of functions.
@article{VMP_2013_14_1_a15,
     author = {K. A. Kirillov},
     title = {On cubature formulas exact for {Haar} polynomials in the case of two-variable functions satisfying the general {Lipschitz} condition},
     journal = {Numerical methods and programming},
     pages = {132--140},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMP_2013_14_1_a15/}
}
TY  - JOUR
AU  - K. A. Kirillov
TI  - On cubature formulas exact for Haar polynomials in the case of two-variable functions satisfying the general Lipschitz condition
JO  - Numerical methods and programming
PY  - 2013
SP  - 132
EP  - 140
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMP_2013_14_1_a15/
LA  - ru
ID  - VMP_2013_14_1_a15
ER  - 
%0 Journal Article
%A K. A. Kirillov
%T On cubature formulas exact for Haar polynomials in the case of two-variable functions satisfying the general Lipschitz condition
%J Numerical methods and programming
%D 2013
%P 132-140
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMP_2013_14_1_a15/
%G ru
%F VMP_2013_14_1_a15
K. A. Kirillov. On cubature formulas exact for Haar polynomials in the case of two-variable functions satisfying the general Lipschitz condition. Numerical methods and programming, Tome 14 (2013) no. 1, pp. 132-140. http://geodesic.mathdoc.fr/item/VMP_2013_14_1_a15/