Improving document ranking based on logs of search engine users
Numerical methods and programming, Tome 13 (2012) no. 4, pp. 559-571 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Search engine logs provide significant information about user preferences. We propose an algorithm that improves search engine ranking quality by using log mining and machine learning. The corresponding evaluation shows a significant improvement in the ranking quality on real-world large-scale datasets. The proposed algorithm allows parallel processing of large-scale data using the MapReduce framework. The developed approach is also applicable to a wide range of log mining tasks.
Keywords: search engines; machine learning; log mining.
@article{VMP_2012_13_4_a8,
     author = {M. S. Ageev},
     title = {Improving document ranking based on logs of search engine users},
     journal = {Numerical methods and programming},
     pages = {559--571},
     year = {2012},
     volume = {13},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMP_2012_13_4_a8/}
}
TY  - JOUR
AU  - M. S. Ageev
TI  - Improving document ranking based on logs of search engine users
JO  - Numerical methods and programming
PY  - 2012
SP  - 559
EP  - 571
VL  - 13
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMP_2012_13_4_a8/
LA  - ru
ID  - VMP_2012_13_4_a8
ER  - 
%0 Journal Article
%A M. S. Ageev
%T Improving document ranking based on logs of search engine users
%J Numerical methods and programming
%D 2012
%P 559-571
%V 13
%N 4
%U http://geodesic.mathdoc.fr/item/VMP_2012_13_4_a8/
%G ru
%F VMP_2012_13_4_a8
M. S. Ageev. Improving document ranking based on logs of search engine users. Numerical methods and programming, Tome 13 (2012) no. 4, pp. 559-571. http://geodesic.mathdoc.fr/item/VMP_2012_13_4_a8/