A variational problem for the biharmonic equation
Numerical methods and programming, Tome 13 (2012) no. 3, pp. 409-412.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of choosing the boundary condition on a part of the boundary is considered for a boundary value problem formulated for the biharmonic equation.
Keywords: biharmonic equations; boundary value problems; projection algorithm; systems of potential; regularization method.
@article{VMP_2012_13_3_a4,
     author = {V. A. Morozov and V. G. Lezhnev and N. M. Tokarev},
     title = {A variational problem for the biharmonic equation},
     journal = {Numerical methods and programming},
     pages = {409--412},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMP_2012_13_3_a4/}
}
TY  - JOUR
AU  - V. A. Morozov
AU  - V. G. Lezhnev
AU  - N. M. Tokarev
TI  - A variational problem for the biharmonic equation
JO  - Numerical methods and programming
PY  - 2012
SP  - 409
EP  - 412
VL  - 13
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMP_2012_13_3_a4/
LA  - ru
ID  - VMP_2012_13_3_a4
ER  - 
%0 Journal Article
%A V. A. Morozov
%A V. G. Lezhnev
%A N. M. Tokarev
%T A variational problem for the biharmonic equation
%J Numerical methods and programming
%D 2012
%P 409-412
%V 13
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMP_2012_13_3_a4/
%G ru
%F VMP_2012_13_3_a4
V. A. Morozov; V. G. Lezhnev; N. M. Tokarev. A variational problem for the biharmonic equation. Numerical methods and programming, Tome 13 (2012) no. 3, pp. 409-412. http://geodesic.mathdoc.fr/item/VMP_2012_13_3_a4/