Bijective coding in the constructive world of $\mathbb R_c^n$
Numerical methods and programming, Tome 13 (2012) no. 3, pp. 465-470.

Voir la notice de l'article provenant de la source Math-Net.Ru

The methods of representation of structures in the standard cubic lattice $\mathbb R_c^n$ in the form of bijective coding on a finite alphabet are developed. These methods are directed on an efficient computer implementation during the storage and computation of topological, metric and combinatorial performances of such structures for large values of $n$. The Hausdorff–Hamming metric for $k$-faces on an $n$-cube is extended to the Gromov-Hausdorff metric between “cubic” metric spaces. Simplicial partitions in an $n$-cube, their bijective coding, and ergodic properties are considered. Combinatorial filling at partitions on $\mathbb R_c^n$ and related numerical performances are considered with respect to capabilities of supercomputers.
Keywords: n-cube; lattice $\mathbb R_c^n$; bijective coding; Gromov-Hausdorff metric; simplicial partitions; combinatorial filling.
@article{VMP_2012_13_3_a11,
     author = {G. G. Ryabov and V. A. Serov},
     title = {Bijective coding in the constructive world of $\mathbb R_c^n$},
     journal = {Numerical methods and programming},
     pages = {465--470},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMP_2012_13_3_a11/}
}
TY  - JOUR
AU  - G. G. Ryabov
AU  - V. A. Serov
TI  - Bijective coding in the constructive world of $\mathbb R_c^n$
JO  - Numerical methods and programming
PY  - 2012
SP  - 465
EP  - 470
VL  - 13
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMP_2012_13_3_a11/
LA  - ru
ID  - VMP_2012_13_3_a11
ER  - 
%0 Journal Article
%A G. G. Ryabov
%A V. A. Serov
%T Bijective coding in the constructive world of $\mathbb R_c^n$
%J Numerical methods and programming
%D 2012
%P 465-470
%V 13
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMP_2012_13_3_a11/
%G ru
%F VMP_2012_13_3_a11
G. G. Ryabov; V. A. Serov. Bijective coding in the constructive world of $\mathbb R_c^n$. Numerical methods and programming, Tome 13 (2012) no. 3, pp. 465-470. http://geodesic.mathdoc.fr/item/VMP_2012_13_3_a11/