Estimates for the norm of the error functional in the spaces $S_p$ for the weight quadrature formulas exact for Haar polynomials
Numerical methods and programming, Tome 13 (2012) no. 2, pp. 324-331.

Voir la notice de l'article provenant de la source Math-Net.Ru

The following estimates for the norm of the error functional are obtained in the spaces $S_p$: a low estimate of $\|\delta_N\|_{S_p^*}$ in the case of the quadrature formulas exact for constants and some upper estimates of $\|\delta_N\|_{S_p^*}$ in the case of the quadrature formulas possessing the Haar $d$-property.
Keywords: Haar $d$-property; error functional of quadrature formula; function spaces $S_p$.
@article{VMP_2012_13_2_a3,
     author = {K. A. Kirillov},
     title = {Estimates for the norm of the error functional in the spaces $S_p$ for the weight quadrature formulas exact for {Haar} polynomials},
     journal = {Numerical methods and programming},
     pages = {324--331},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMP_2012_13_2_a3/}
}
TY  - JOUR
AU  - K. A. Kirillov
TI  - Estimates for the norm of the error functional in the spaces $S_p$ for the weight quadrature formulas exact for Haar polynomials
JO  - Numerical methods and programming
PY  - 2012
SP  - 324
EP  - 331
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMP_2012_13_2_a3/
LA  - ru
ID  - VMP_2012_13_2_a3
ER  - 
%0 Journal Article
%A K. A. Kirillov
%T Estimates for the norm of the error functional in the spaces $S_p$ for the weight quadrature formulas exact for Haar polynomials
%J Numerical methods and programming
%D 2012
%P 324-331
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMP_2012_13_2_a3/
%G ru
%F VMP_2012_13_2_a3
K. A. Kirillov. Estimates for the norm of the error functional in the spaces $S_p$ for the weight quadrature formulas exact for Haar polynomials. Numerical methods and programming, Tome 13 (2012) no. 2, pp. 324-331. http://geodesic.mathdoc.fr/item/VMP_2012_13_2_a3/