Optimization of trading strategies by parallel evolutionary computation on graphics processing units
Numerical methods and programming, Tome 13 (2012) no. 1, pp. 28-32
Voir la notice de l'article provenant de la source Math-Net.Ru
An approach to the optimization of trading strategies (algorithms) based on indicators of financial markets and evolutionary computation is described. A parallel version of a genetic algorithm for searching optimal parameters of trading strategies to maximize the trading profit on GPU from NVIDIA in the framework of the CUDA technology is discussed.
Keywords:
trading strategies; parallel genetic algorithm; financial indicator; evolutionary computation.
@article{VMP_2012_13_1_a3,
author = {O. G. Monakhov},
title = {Optimization of trading strategies by parallel evolutionary computation on graphics processing units},
journal = {Numerical methods and programming},
pages = {28--32},
publisher = {mathdoc},
volume = {13},
number = {1},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMP_2012_13_1_a3/}
}
TY - JOUR AU - O. G. Monakhov TI - Optimization of trading strategies by parallel evolutionary computation on graphics processing units JO - Numerical methods and programming PY - 2012 SP - 28 EP - 32 VL - 13 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMP_2012_13_1_a3/ LA - ru ID - VMP_2012_13_1_a3 ER -
O. G. Monakhov. Optimization of trading strategies by parallel evolutionary computation on graphics processing units. Numerical methods and programming, Tome 13 (2012) no. 1, pp. 28-32. http://geodesic.mathdoc.fr/item/VMP_2012_13_1_a3/